PRODUCTION OF VITAMIN B₁₂ BY ACTINOMYCETES

BY

WAEL MOHAMED ABU EL-WAFA

B. Sc. Agric. Sc. (Plant Pathology), Asyut University, 1994

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture-Ain Shams University

Approval Sheet

PRODUCTION OF VITAMIN B₁₂ BY ACTINOMYCETES

BY

WAEL MOHAMED ABU EL-WAFA

B. Sc. Agric. Sc. (Plant Pathology), Asyut University, 1994

This thesis for M. Sc. degree has been approved by Prof. Dr. Rabea Mohamed El-Shahawy Prof. Emeritus of Agric. Microbiol., Fac. Agric., Cairo University. (Fayom Branch) Prof. Dr. Abd El-Mohsen Ahmed Refaat Prof. Emeritus of Agric. Microbiol., Fac. Agric., Ain Shams University Prof. Dr. El-Sayed Ahmed Saleh Prof. Emeritus of Agric. Microbiol., Fac. Agric., Ain Shams University

Date of examination: 9 / 6 / 2005

PRODUCTION OF VITAMIN B₁₂ BY ACTINOMYCETES

BY

WAEL MOHAMED ABU EL-WAFA

B. Sc. Agric. Sc. (Plant Pathology), Asyut University, 1994

Under the supervision of

Prof. Dr. El-Sayed Ahmed Saleh

Prof. Emeritus of Agric. Microbiology, Dept. of Agric. Microbiol., Fac. of Agric., Ain Shams University (principle supervisor)

Dr. Fathalla Hassan Ahmed

Associate Prof. of Microbiology, National Organization for Drug Control and Research

Dr. Mohamed Said Sharaf

Assistant Prof. of Agric. Microbiology, Dept. of Agric. Microbiol., Fac. of Agric., Ain Shams University

ACKNOWLEDGMENT

The author wishes to express his deepest gratitude to Prof. Dr. EL-Sayed A. Saleh, Prof. of Microbiology, Microbiology Dept., Faculty of Agric., Ain Shams University, for suggesting the problems, supervision, progressive criticism and scientific guidance.

Thanks is also to Assoc. Prof. Dr. Fathalla H. Ahmed, Head of General Branch of Medical and Basic Sciences, National Organization for Drug Control and Research (NODCAR) for supervision, encouragement and advices.

A deep thanks is also to Dr. Mohamed S. Sharaf, Assist. Prof. of Microbiology. Microbiology Dept., Faculty of Agric., Ain Shams Univ. for supervision, encouragement and scientific guidance.

Sincere appreciation to Dr. Essam Ezz El-din Hassan, Head of Drug Bioavailability Center, National Organization for Drug Control and Research (NODCAR) for providing the facilities and helpfulness during the study of the vitamin B_{12} bioavailability.

Deep thanks are also due to the Head of Microbiology Department, National Organization for Drug Control and Research (NODCAR) and all staff members of Microbiology Dept. for the facilities offered and encouragement.

To my parents and my family, I wish to express my warmest thanks for their patience, encouragement and assistance.

إنتاج فيتامين ب12 بواسطة ألأكتينوميسيتات

رسالة مقدمة من

وائل محمد أبو الوفا بكالوريوس علوم زراعية (أمراض النبات) ،جامعة أسيوط، 1994

للحصول على

درجة الماجستير فبالعلوم الزراعية (ميكروبيولوجيا زراعية)

> قسم الميكروبيولوجيا الزراعية كلية الزراعة- جامعة عين شمس

صفحة الموافقة علىالرسالة

إنتاج فيتامين ب12 بواسطة ألأكتينوميسيتات

رسالة مقدمة من

وائل محمد أبو الوفا بكالوريوس علوم زراعية (أمراض النبات)، جامعة أسيوط،1994

للحصول على

درجة الماجستير فالعلوم الزراعية (ميكروبيولوجيا زراعية)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

الد. ربيع محمد الشهاوى
الستاذ الميكروبيولوجيا الزراعية المتفرغ، كلية الزراعة ، جامعة القاهره (فرع الفيوم)
اد. عبد المحسن أحمد رفعت
استاذ الميكروبيولوجيا الزراعية المتفرغ، كلية الزراعة ، جامعة عين شمس
اد. السيد أحمد صالح
استاذ الميكروبيولوجيا الزراعية المتفرغ، كلية الزراعة ، جامعة عين شمس

تاريخ المناقشة 9 / 6/ 2005

رسالة ماجستير

اسم الطالب: وائل محمد أبو الوفا

عنوان الرسالة: إنتاج فيتامين ب12بواسطة الأكتينوميسيتات

أسم الدرجة: ماجستير في العلوم الزراعية (ميكروبيولوجيا زراعية)

لجنة ألأشر اف:

 أ.د. السيد أحمد صالح
 أستاذالميكروبيولوجيا الزراعية المتفرغ، قسم الميكروبيولوجياالزراعية، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. فتح الله حسن أحمد

أستاذ مساعد، شعبة الميكر وبيولوجي ، الهيئة القومية للرقابة والبحوث الدوائية

د. محمد سعید شرف

مدرس الميكروبيولوجيا الزراعية، قسم الميكروبيولوجياالزراعية، كلية الزراعة ، جامعة عين شمس

تاريخ البحث /9/2001

الدراسات العليا

أجيزت الرسالة بتاريخ 2005/ /

ختم الإجازة

موافقة مجلس الجامعة موافقة مجلس الكلية

2005 / / 2005 / /

ABSTRACT

WAEL MOHAMED ABU EL-WAFA

Production of vitamin B_{12} by actinomycetes

The aim of the present study was to produce vitamin B_{12} by some actinomycetes using different raw materials such as molasses, oatmeal and cheese whey, moreover some environmental factors i.e. incubation period, initial pH, temperature and shaking rate at different levels were also studied.

One hundred and three actinomycete isolates obtained from different soils at various localities in Egypt and were purified. The isolates were morphologically investigated as described by **Bergey's Manual (1984)**. Results revealed that they are belonging to the genus *Streptomyces*.

Screening results revealed that only twelve of them were vitamin B₁₂ producers representing 11.65% of total number of *Streptomyces* isolates and the level of vitamin B₁₂ yield ranged between 0.78 to 1.70 µg ml⁻¹. The maximum production of the vitamin was produced by the *Streptomyces* isolate SW1, being 1.70 µg ml⁻¹, followed in descending order by *Streptomyces* isolates SW7, SR1A and SR1, being 1.45, 1.40 and 1.38 µg ml⁻¹, respectively . The aforementioned four isolates were completely identified up to species according to the keys proposed by **Shirling and Gottlieb (1968_{a,b})** and **Bergey's Manual (1974)** as *Streptomyces baarnensis* strain SW1; *Streptomyces clavifer* strain SW7; *Streptomyces halstedii* strain SR1A and *Streptomyces nigrifaciens* strain SR1.

The four efficient *Streptomyces* strains SW1, SW7, SR1A and SR1 retested in modified starch nitrate fermentation medium to select the most efficient one in vitamin B_{12} production. Results revealed that the *Streptomyces baarnensis* SW1 proved to be the most efficient strain in vitamin B_{12} production, thus it was selected for subsequent study.

The obtained results revealed that the optimal production of vitamin B_{12} was reached under submerged culture condition in the modified fermentation medium containing 15 g L^{-1} molasses with initial pH value of 6 and a temperature of 28 °C after 4 days on a rotary shaker

at 200 rpm, being 53.20 μg ml⁻¹. Results also revealed that the optimal production of vitamin B_{12} was reached under submerged culture condition in the modified fermentation medium containing 15 g L⁻¹ oatmeal extract with initial pH value of 7 and a temperature of 32 °C after 6 days on a rotary shaker at 200 rpm, being 61.08 μg ml⁻¹.

Concerning the addition of cheese whey to the modified fermentation medium, results indicated that the optimal production of vitamin B_{12} was reached 2.79 $\mu g\ ml^{-1}$ under submerged culture condition in the modified fermentation medium containing 40 ml L^{-1} cheese whey with initial pH value of 7 and a temperature of 32 $^{\rm o}C$ after 5 days on a rotary shaker at 200 rpm.

In the light of aforementioned results, it could be concluded that the yield of vitamin B_{12} production by the *Streptomyces baarnensis* SW1 was affected by the type of raw material. The most efficient *Streptomyces baarnensis* strain SW1 produced the highest yield of the vitamin (61.08 $\mu g \ ml^{-1}$) in modified fermentation medium containing 15 g L⁻¹ oatmeal extract, but, the yield decreased to 53.20 $\mu g \ ml^{-1}$ in the same medium containing 15 g L⁻¹ molasses, while the lowest yield of the vitamin was 2.79 $\mu g \ ml^{-1}$ in the same medium containing 40 ml L⁻¹ cheese whey under the same condition.

In vivo, the availability of vitamin B_{12} , derived from Streptomyces baarnensis SW1, was studied. Results indicated that vitamin B_{12} in dried mycelium of Streptomyces baarnensis SW1 was bioavailable.

Keywords: Identification, *Streptomyces baarnensis*, HPLC, Cyanocobalamin (B₁₂) , bioavailability

LIST OF CONTENTS

	age
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Physicochemical properties of vitamin B ₁₂	3
2.2. Importance of vitamin B ₁₂	3
2.3. Sources of vitamin B ₁₂ in foodstuffs	5
2.4. Production of vitamin B_{12} by microorganisms	5
2.5. Production of vitamin B_{12} by actinomycetes	7
2.6. Factors affecting the production of vitamin B_{12} by	
microorganisms	8
2.6.1. Effect of different carbon sources	8
2.6.2. Effect of different nitrogen sources	10
2.6.3. Effect of trace elements	11
2.6.4. Effect of pH	12
2.6.5. Effect of temperature	12
2.6.6. Effect of aeration	13
2.7. Assay of vitamin B ₁₂	13
2.7.1. Microbiological methods	13
2.7.2. Biological methods	14
2.7.3. Chemical and Physicochemical methods	15
2.7.3.1. Spectrophotometric assay B ₁₂	15
2.7.3.2.Spectrophotometric cyanide and dicyanide determinations	15
2.7.3.3. Colorimetric determination with nitroso –R Salt	16
2.7.3.4. Determination by atomic absorption spectroscopy	16
2.7.3.5. Radioactive tracer assay	16
2.7.3.6. Determination by chelating radiometric titration	17
2.7.3.7. Countercurrent distribution method	17
2.7.3.8.Determination by paper and thin layer chromatography	18
2.7.3.9.Determination by high performance liquid chromatography	18
2.8.Bioavailability of vitamin B_{12} derived from some microorganisms	18
3. MATERIALS AND METHODS	19
3.1. Materials	19
3.1.1. Media	19
3.1.1.1. Media used for isolation, purification and identification of	
actinomycetes	19
3.1.1.2. Media used for activation, screening and production of	

vitamin B ₁₂	23
3.1.2. Chemicals	24
3.2. Methods	24
3.2.1. Isolation, purification and screening of actinomycetes	24
3.2.2. Identification of the efficient <i>Streptomyces</i> isolates in vitamin	
B ₁₂ production	26
3.2.2.1. Cultural and morphological characteristics	26
3.2.2.2. Physiological characteristics	26
3.2.3. Optimization of nutrient requirements and environmental	
conditions for maximal production of vitamin B_{12} by	27
Streptomyces baarnensis strain SW1	
3.2.3.1. Preparation of standard inoculum	27
3.2.3.2. Using different concentrations of raw materials	27
3.2.3.3. Environmental factors affecting vitamin B_{12} production	28
3.2.4. In vivo availability of vitamin B_{12} derived from dried	
mycelium of Streptomyces baarnensis strain SW1	28
4. RESULTS AND DISCUSSION	29
4.1. Screening of actinomycete isolates for vitamin B_{12} production	29
4.2. Identification of the four efficient <i>Streptomyces</i> isolates	29
4.2.1. Identification of <i>Streptomyces</i> isolate SW1	31
4.2.2. Identification of <i>Streptomyces</i> isolate SR1	31
4.2.3. Identification of <i>Streptomyces</i> isolate SR1A	31
4.2.4. Identification of <i>Streptomyces</i> isolate SW7	38
4.3. Production of vitamin B_{12} by the efficient <i>Streptomyces</i> strains	
in modified starch nitrate fermentation medium	38
4.4. Production of vitamin B_{12} by the most efficient S. baarnensis	
SW1 in modified fermentation medium containing different	41
raw materials	
4.5. Environmental factors affecting vitamin B ₁₂ production	44
4.5.1. Effect of incubation period	45
4.5.2. Effect of initial pH	48
4.5.3. Effect of temperature	51
4.5.4. Effect of shaking rate	54
4.6. In vivo availability of vitamin B ₁₂ derived from Strptomyces	
baarnensis strain SW1	57
SUMMARY	61
REFERENCES	66
ARABIC SUMMARY	

LIST OF FIGURES

Fig. (1)	Vitamin B ₁₂ (Cyanocobalamin) (C ₆₃ H ₈₈ O ₁₄ N ₁₄ CoP) molecular weight 1355.42 Dalton (Hodgkin <i>et al.</i> , 1955)	4
Fig. (2 _a)	Electron micrograph of spore surface ornamentation of <i>Streptomyces</i> isolate SW1 (X 25000)	33
Fig.(2 _b)	Microphotograph of spore chains morphology of <i>Streptomyces</i> isolate SW1 (X 1620)	33
Fig. (3 _a)	Electron micrograph of spore surface ornamentation of <i>Streptomyces</i> isolate SR1 (X 25000)	35
Fig.(3 _b)	Microphotograph of spore chains morphology of <i>Streptomyces</i> isolate SR1 (X 1620)	35
Fig. (4 _a)	Electron micrograph of spore surface ornamentation of <i>Streptomyces</i> isolate SR1A (X 25000)	37
Fig.(4 _b)	Microphotograph of spore chains morphology of <i>Streptomyces</i> isolate SR1A (X 1620)	37
Fig. (5 _a)	Electron micrograph of spore surface ornamentation of <i>Streptomyces</i> isolate SW7 (X 25000)	40
Fig.(5 _b)	Microphotograph of spore chains morphology of <i>Streptomyces</i> isolate SW7 (X 1620)	40
Fig. (6)	Production of vitamin B ₁₂ by <i>Streptomyces baarnensis</i> strain SW1 in modified fermentation medium containing different raw materials at various concentrations	43

Fig.(7 _a)	Effect of incubation period on mycelium dry weight of S. baarnensis SW1 grown in modified fermentation medium containing different raw materials	47
Fig.(7 _b)	Effect of incubation period on vitamin B ₁₂ yield of <i>S. baarnensis</i> SW1 grown in modified fermentation medium containing different raw materials	47
Fig. (8 _a)	Effect of initial pH on mycelium dry weight of <i>S. baarnensis</i> SW1 growing in modified fermentation medium containing different raw materials.	50
Fig. (8 _b)	Effect of initial pH on vitamin B ₁₂ yield of S. baarnensis SW1 grown in modified fermentation medium containing different raw materials	50
Fig. (9 _a)	Effect of temperature on mycelium dry weight of <i>S. baarnensis</i> SW1 grown in modified fermentation medium containing different raw materials.	53
Fig. (9 _b)	Effect of temperature on vitamin B ₁₂ yield of <i>S. baarnensis</i> SW1 grown in modified fermentation medium containing different raw materials	53
Fig. (10 _a)	Effect of shaking rate on mycelium dry weight of <i>S. baarnensis</i> SW1 grown in modified fermentation medium containing different raw materials	56
Fig.(10 _b)	Effect of shaking rate on vitamin B ₁₂ yield of S. baarnensis SW1 grown in modified fermentation medium containing different raw materials	56
Fig. (11)	Yield of vitamin B ₁₂ produced by S. baarnensis SW1 grown in modified fermentation medium (m.f.m.) containing different raw materials at different shaking rates (rpm)	58
Fig.(12)	In vivo availability of vitamin B_{12} derived from S. baarnensis strain SW1	59

List of Tables

		page
Table 1	Screening of <i>Streptomyces</i> isolates according to their efficiencies in producing vitamin B_{12} in Saunders medium	30
Table 2	Cultural, morphological and physiological characteristics of <i>Streptomyces</i> isolate SW1 as compared with those of similar species reported in different identification keys	32
Table 3	Cultural, morphological and physiological characteristics of <i>Streptomyces</i> isolate SR1 as compared with those of similar species reported in different identification keys	34
Table 4	Cultural, morphological and physiological characteristics of <i>Streptomyces</i> isolate SR1A as compared with those of similar species reported in different identification keys	36
Table 5	Cultural, morphological and physiological characteristics of <i>Streptomyces</i> isolate SW7 as compared with those of similar species reported in different identification keys	39
Table 6	Production of vitamin B ₁₂ by the efficient <i>Streptomyces</i> strains in modified starch nitrate fermentation medium	42
Table 7	Production of vitamin B ₁₂ by <i>Streptomyces baarnensis</i> strain SW1 in modified fermentation medium containing different raw materials at various concentrations	42
Table 8	Effect of incubation period on the growth and production of vitamin B_{12} by <i>Streptomyces baarnensis</i> SW1 in modified fermentation medium containing 15 g L^{-1} molasses	46
Table 9	Effect of incubation period on the growth and production of vitamin B ₁₂ by <i>Streptomyces baarnensis</i> SW1 in modified fermentation medium containing 15 g L ⁻¹ oatmeal extract	46

Table 10	Effect of different incubation period on the growth and production of vitamin B ₁₂ by <i>Streptomyces baarnensis</i> SW1 in modified fermentation medium containing 40ml L ⁻¹ cheese whey	46
Table 11	Effect of initial pH on the growth and production of vitamin B ₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L ⁻¹ molasses	49
Table 12	Effect of initial pH on the growth and production of vitamin B ₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L ⁻¹ oatmeal	49
Table 13	Effect of initial pH on the growth and production of vitamin B ₁₂ by <i>S. baarnensis</i> SW1 in modified fermentation medium containing 40ml L ⁻¹ cheese whey	49
Table 14	Effect of temperature on the growth and production of vitamin B ₁₂ by <i>S. baarnensis</i> SW1 in modified fermentation medium containing 15 g L ⁻¹ molasses	52
Table 15	Effect of temperature on the growth and production of vitamin B ₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L ⁻¹ oatmeal extract	52
Table 16	Effect of temperature on the growth and production of vitamin B ₁₂ by <i>S. baarnensis</i> SW1 in modified fermentation medium containing 40 ml L ⁻¹ cheese whey	52
Table 17	Effect of shaking rate on the growth and production of vitamin B ₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L ⁻¹ molasses	55
Table 18	Effect of shaking rate on the growth and production of vitamin B ₁₂ by S. baarnensis SW1 in modified fermentation medium containing 15 g L ⁻¹ oat meal extract	55
Table 19	Effect of shaking rate on the growth and production of vitamin B ₁₂ by <i>S. baarnensis</i> SW1 in modified fermentation medium containing 40ml L ⁻¹ cheese whey	55