

Evaluation of the response of Fractional Carbon Dioxide (CO2) Laser and Punch Elevation Technique in Treatment of Acne Scars: A split-face comparative clinical, histopathological, and immunohistochemical study

An M.Sc. Thesis

Submitted to the Department of Dermatology, Venereology, and Andrology,

Faculty of Medicine, Ain Shams University

In partial fulfillment of Master degree in Dermatology, Venereology, and Andrology

Prepared by

Seif –Allah MOHAMED REFAAT EL-FIKY, MBBCh Under the Supervision of

Prof. Dr. Sahar El-Sayed Ahmed

Professor of Dermatology, Venereology, and Andrology, Faculty of Medicine, Ain Shams University

Prof. Dr. Manal Hassan Moussa

Professor of Histology, Faculty of Medicine, Ain Shams University

Dr. Rania Mahmoud Elhusseiny

Lecturer of Dermatology, Venereology, and Andrology, Faculty of Medicine, Ain Shams University

Ain Shams University

(2017)

ACKNOWLEGEMENT

It has been my good fortune to carry out this work under the supervision of **Prof. Dr. Sahar EI-Sayed Ahmed**, Professor of Dermatology, Venereology, and Andrology, Faculty of Medicine, Ain Shams University, who kindled my interest in the subject of the present study, in comprehensive approach and to whom I am grateful for her support, encouragement and constant guidance that helped me through the whole period of the study.

I am deeply grateful to **Prof. Dr. Manal Hassan Moussa**, Professor of Histology, Faculty of Medicine, Ain Shams University. Her expertise in the field of Histology has set the standards on the subject of the presented study, without which anyone interested in the topic would be lacking.

My thanks also to **Dr. Rania Mahmoud Elhusseiny**, Lecturer of Dermatology, Venereology,

and Andrology, Faculty of Medicine, Ain Shams University. I enjoyed a full reading of the whole work from start to end of the study, The positive impact of her extensive help, archival information, and personal understanding are undeniable.

Finally, I extend my thanks to **Dr. Ahmed El_Beltagy**, assistant Lecturer of Dermatology, Venereology, and Andrology, Faculty of Medicine, Ain Shams University, who so generously gave his time, efforts and guidance. This study has not been possible without his super help.

Seif-Allah M.R.Elfiky

CONTENTS

Page	No.
------	-----

Introduction	•••••	1
Aim of the study	••••	3
Part (I): Review of the Literature:	4	•••••
Atrophic acne scarring 9		
Chapter 2: Treatment approaches of post acne scars	24	
Part (II) : The Clinical Study:		
A) Patients :	38	
B) Methods	42	
C) Procedures	43	
D) Statistical analysis	45	
Part (III) : Results and their analyses:		47
Part (IV): Discussion:		82
Part (V): Recommendations	91	1
Part (VI): Summary & Conclusion	!	92
Part (VII): References	9	6
Part (IX): Arabic Summary	107	,

LIST of ABBREVIATIONS

AP Activator Protein

ASR Ablative Skin Resurfacing

CO₂ Carbon Dioxide

ECCA Evaluation Clinique des Cicatrices d'acne

scale

EGF Epidermal Growth Factors

Er.-YAG Erbium Yttrium Aluminum Garnet

FGF Fibroblast Growth Factor

FP Fractional Photothermolysis

FT Fractional Thermolysis

H & E Hematoxin and Eosin

HSV Human immuno-Suppressing Virus

IL Interleukin

MENDs Microscopic Epidermal necrotic Debris

MMPs Matrix Metallo-Proteinases

MTZs Micro-Thermal Zones

NDR Non-ablative Dermal Remodeling

Nd-YAG Neodymium – doped Yttrium Aluminum

Garnet

NRS Numerical Rating Scale

O2 Oxygen

P.acne Propionibacterium acne

PAMPs Pathogen-Associated Molecular Patterns

PC Personal Computer

PPAR Peroxisome Proliferator-Activated

Receptors

PRP Platelet-Rich Plasma

Punch/Frac CO2 Punch Elevation technique, combined with

Fractional CO₂

laser treatment

"r" correlation coefficient

RF Radio Frequency

RNase Ribo Nuclease enzyme

SD Standard Deviation

SPF Sun Protection Factor

SSPS Statistical Package for Scocial Science

T-cells Tissue mediated immune cells

TCA Tri-Chloro-Acetic Acid

TIMPs Tissue Inhibitor of Matrix metallo-

Proteins

TNF Tumor Necrosis Factor

TH Tissue Helper

TLRs Toll-Like Receptors

VEGF Vascular Endothelium Growth Factor

YSGG Yttrium - Scandium - Gallium - Garnet

LIST of TABLES

Table No. Page No.
Tab. (1): Qualitative scarring grading system of Goodman & Baron
Tab. (2): Goodman's quantitative global acne scarring grading system 16
Tab. (3): Kadunc's morphologic classification of acne scars
Tab. (4): ECCA grading scale
Tab. (5): Description of personal data among study cases
Tab. (6): Patient's personal data, patient's satisfaction and clinical results of the Study48
Tab. (7): Histopathological and histochemical data of the patients
Tab. (8): Description of Goodman's scale before and after punch elevation /fracCO2Laser among study cases
Tab. (9) : Description of Goodman's scale before and after frac CO2 Laser only among study cases
Tab.(10): Description of grade of improvement according to Goodman's scale after punch/ frac CO2 laser and frac CO2 laser alone
Tab. (11): Description of the change in Goodman's scale after punch /frac.CO2 laser and frac CO2 laser treated sides
Tab.(12): Description of present of change in Goodman's scale after punch /frac.CO2 laser and frac CO2 laser treated sides
Tab. (13): Comparison between punch/frac CO2 laser and frac CO2 laser treated sides as regard the change in Goodman's scale score
Tab. (14): Comparison between punch/frac CO2 laser and frac CO2 laser treated sides as regard percentage of change in the Goodman's scale score

Tab.(15): Comparison between punch/frac CO2 laser and frac CO2 laser treated sides as regard patient satisfaction
Tab.(16): Relation between each of sex, family history, and the change in Goodman's scale after punch/frac CO2 laser
Tab.(17): Relation between each of sex, family history, and the change in Goodman's scale after frac CO2 laser alone
Tab.(18): Correlation between age and the change in Goodman's scale after punch/frac CO2 laser
Tab.(19): Correlation between age and the change in Goodman's scale after frac CO2 laser alone
Tab.(20): Relation between each of sex, family history, and the percent of change in Goodman's scale after punch/ frac CO2 laser
Tab.(21): Corelation between age and the percent of change in Goodman's scale after punch/ frac CO2 laser
Tab.(22): Relation between each of sex, family history, and the percent of change in Goodman's scale after frac CO2 laser alone
Tab.(23): Corelation between age and the percent of change in Goodman's scale after frac CO2 laser alone
Tab.(24): Description of histopathological results before treatment in punch/frac CO2 laser treated side
Tab.(25): Description of histopathological results after treatment in punch/frac CO2 laser treated side
Tab.(26): Description of histopathological results before treatment in frac CO2 laser only treated side
Tab.(27): Description of histopathological results after treatment in frac CO2 laser only treated side
Tab.(28): Comparison between fibroblasts' activity before and after punch/frac CO2 laser treatment using VEGF Immunohistochemical marker

Tab.(29): Comparison between fibroblast activity before and after fractional CO2 laser only treatment
Tab.(30): Comparison between punch/fractional CO2 laser and fractional CO2 laser treated side as regard fibroblast activity before treatment
Tab. (31): Comparison between punch/fractional CO2 laser treated side and fractional CO2 laser only treated side as regard fibroblast activity after treatment 69
Tab. (32): Comparison between epidermal thickness before and after punch/frac CO2 laser treatment using H & E
Tab.(33): Comparison between epidermal thickness before and after fractional CO2 laser only treatment using H&E
Tab.(34): Comparison between punch/fractional CO2 treated side and fractional CO2 only treated side as regard epidermal thickness before treatment using H&E 72
Tab.(35): Comparison between punch/fractional CO2 treated side and fractional CO2 only treated side as regard epidermal thickness after treatment using H&E72
Tab.(36): Comparison between Type I collagen before and after punch/frac CO2 laser treatment using Mallory trichrome stain
Tab.(37): Comparison between Type I collagen before and after fractional CO2 laser only treatment
Tab.(38): Comparison between punch/fractional CO2 laser treated side and fractional CO2 laser only treated side as regard Type I collagen before treatment
Tab.(39): Comparison between punch/fractional CO2 laser treated side and fractional CO2 laser only treated side as regard Type I collagen after treatment 75
Tab.(40): Comparison between Type III collagen before and after punch/frac CO2 laser treatment using Silver stain

Tab.(41): Comparison between Type III collagen before and after fractional CO2 laser only treatment using sliver stain
Tab.(42): Comparison between punch/fractional CO2 and fractional CO2 treated side as regard Type III collagen before treatment using sliver stain
Tab.(43): Comparison between punch/fractional CO2 laser and fractional CO2 laser treated side as regard Type III collagen after treatment using sliver stain 79
Tab.(44): Correlations between Goodman's quantitative scale and histopathological results before punch/frac CO2 laser treatment
Tab.(45): Correlations between Goodman's quantitative scale and histopathological results before fractional CO2 laser treatment
Tab.(46): Correlations between Goodman's quantitative scale and histopathological results after punch/frac CO2 laser treatment
Tab.(47): Correlations between after fractional CO2 only treatment Goodman's scale and histopathology

LIST of FIGURES

Figure No. Pag	e No.
Fig. (1): Types of acne scars	11
Fig. (2): Ice pick acne scars	11
Fig. (3): Rolling acne scars	12
Fig. (4): Boxer acne scars	. 13
Fig. (5): Various treatment options for acne scars	. 21
Fig. (6): The blunt subcision blades	39
Fig. (7): Punch elevation technique	29
Fig. (8): Punch elevation technique	30
Fig. (9): Conceptual comparison of ablative skin resurfacing, non-ablative (Remodeling, and fractional photothermolysis	dermal 32
Fig.(10): Disposable biopsy punch	43
Fig.(11): BISON Fire-Xel Fractional CO2 Laser	44
Fig. (12): Right side of a male patient's face , before and after treatment	50
Fig. (13): Left side of the same male patient's face , before and after treatment	t51
Fig. (14): Right side of a female patient's face , before and after treatment	. 52
Fig. (15): Left side of the same female patient's face , before and after treat 53	ment
Fig. (16): Right and left sides of another female patient's face , before an treatment	_

Fig. (17): Right and left sides of another male patient's face , before and after treatment
Fig. (18): Right and left sides of another male patient's face , before and after treatment
Fig.(19): Comparison between Goodman's scale before and after treatment with punch elevation and fractional CO2 laser
Fig.(20): Comparison between Goodman's scale before and after treatment with fractional CO2 laser alone
Fig.(21): Comparison between punch / fract CO2 laser and fract CO2 laser treated sides as regards the change in Goodman's scale scores
Fig.(22): Comparison between punch / fract CO2 laser and fract CO2 laser treated sides as regards percentage of change in Goodman's scale scores 61
Fig.(23): Comparison between punch / fract CO2 laser and fract CO2 laser alone treated sides as regards patients' satisfaction
Fig.(24): Comparison between fibroblasts' activity before and after punch/frac CO2 laser treatment using VEGF Immunohistochemical marker 68
Fig.(25): Comparison between fibroblasts' activity before and after fractional CO2 laser only treatment using VEGF Immunohistochemical marker 68
Fig.(26 A & B): Histopathological pictures showing fibroblasts' activity before and after punch/frac CO2 laser treatment using VEGF Immuno-histochemical marker
Fig.(27 A & B): Histopathological pictures showing fibroblasts' activity before and after fractional CO2 laser only treatment using VEGF Immuno-histochemical marker
Fig.(28): Comparison between epidermal thickness before and after punch/frac CO2 laser treatment using H & E
Fig.(29): Comparison between epidermal thickness before and after fractional CO2 laser only treatment using H & E

Fig.(30 A & B): Histopathological pictures showing epidermal thickness before and after punch/frac CO2 laser treatment using H & E
Fig.(31 A & B): Histopathological pictures showing epidermal thickness before and after fractional CO2 laser only treatment using H & E
Fig.(32): Comparison between Type I collagen before and after punch/frac CO2 laser treatment using Mallory trichrome stain
Fig.(33): Comparison between Type I collagen before and after fractional CO2 laser only treatment using Mallory trichrome stain
Fig.(34 A & B): Histopathological pictures showing Type I collagen before and after punch/frac CO2 laser treatment using Mallory trichrome stain 76
Fig.(35 A & B): Histopathological pictures showing Type I collagen before and after fractional CO2 laser only treatment using Mallory trichrome stain 76
Fig.(36): Comparison between Type III collagen before and after punch/ fract CO2 laser treatment using Silver stain
Fig.(37): Comparison between Type III collagen before and after fractional CO2 laser only treatment using Silver stain
Fig.(38): Correlations between Goodman's quantitative scale and fibroblasts activity before punch/frac CO2 laser treatment

Abstract

Background: Acne is the most common skin disease affecting adolescents and young adults, with associated scarring and its sequelae. Treatment options are either lifting procedures raising scar base closer to normal skin surface, or resurfacing ones injuring epidermis and superficial dermis with neocollagenesis and epidermal repair. Punch elevation(PE) method is better for improving deep atrophic acne scars, that can be combined with depth resurfacing. CO2 laser stimulates new collagen formation, tightens skin and raises scar to surface. Aim of the work: to assess efficacy and safety of combination of PE technique and fractional co2 laser (Fr co2 L) compared to fr co2 L alone. Subjects and Methods: 20 atrophic post acne scars patients were history taking, general and dermatological subjected to examinations, identifying scars types and grades. Treatment response at start, before each fr. co2 L session and 4 weeks after last laser session was clinically evaluated by Goodman and Baron scale, and recording patients' photographs, satisfaction, and complications. Histopathological examination of scar skin biopsies before and 4 weeks after the last fr. co2 L session was done using H&E, Mallory trichome, sliver stain and immunehistochemical VEGF. Results: combined treatment with fr co2 L and PE was more effective in improving post acne scars than fr. co2 L resurfacing alone. Histopathological examination before combined fr. co2 L and PE treatment and 1 month after the last fr. co2 L session showed high significant increase in epidermal thickness (H&E), increase in collagen fiber type III (Mallory trichrome stain), decrease in collagen fiber type I (sliver stain) and increase in fibroblasts'activity (VEGF). Conclusion: both PE technique and fr. co2 L resurfacing show promising efficacy and safety in treating atrophic post acne scars, complementing each other to improve skin texture and appearance, with excellent cosmetic outcomes.

Key words: Acne scar, Punch elevation, Fractional CO₂ Laser, Efficacy, Safety.