

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

Enhancing Multimedia Traffic Performance over MPLS Networks

Submitted by

Ahmed El Sayed Fathy Ahmed Abd El Latif

B.Sc. of Electrical Engineering

(Electronics and Communications Engineering)

Military Technical College, 1992

Supervised By

Prof.Dr. Salwa Hussein Elramly

Dr. Hussein Abd el Aaty El sayed

Cairo 2014

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

CAIRO-EGYPT

Name: Ahmed El Sayed Fathy Ahmed Abd El Latif

Thesis title: "Enhancing Multimedia Traffic Performance over MPLS Networks".

Degree: Master of Science in Electrical Engineering (Electronics

& Electrical Communications Engineering Department).

EXAMINERS COMMITTEE

Name	Signature
Prof. Hebat-Allah Mostafa Mourad	
Electronics&Electrical	
Communications Eng. Dep.	
Faculty of Engineering - Cairo	
University	
Prof. Hadia Mohamed El Henawy	
Electronics&Electrical	
Communications Eng. Dep.	
Faculty of Engineering - Ain Shams	
University	
Prof. Salwa Hussein El Ramly	
Electronics & Electrical	
Communications Eng. Dep.	
Faculty of Engineering - Ain Shams	
University	
	Date: / /

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Ahmed El Sayed Fathy Ahmed Abd El Latif

Signature:

Date:

Curriculum Vitae

Name of Researcher: Ahmed El Sayed Fathy Ahmed

Date of Birth: 20/11/1969

Place of Birth: Cairo, Egypt

First University

Degree:

B.Sc. in Electrical Engineering

Name of University: Military Technical College

Date of Degree: June 1992

ABSTRACT

One of the most crucial problems in the Internet has been the quality of service (QoS) provisioning. Multiprotocol Label Switching (MPLS) technology guarantees real time and multimedia applications QoS using different resource allocation techniques. Also MPLS contributes high scalability in data network.

Today's IP networks are being enhanced using MPLS to carry multimedia traffic. MPLS technology has proven itself in providing QoS and seamless integration with the existing huge IP networks. This thesis aims to evaluate MPLS performance based on multimedia service average throughput, total number of packets received, end to end delay, jitter, and packet loss ratio using OPNET simulator. It also compares MPLS network performance to that provided by IP networks. This study shows the scalability of MPLS by simulating small and large networks under different loading conditions. The simulation also shows the performance of different MPLS QoS configurations.

Also, this thesis illustrates the multimedia traffic performance enhancement by investigating three different scenarios using OPNET simulator since it's almost impossible to convert the entire IP networks to a newer technology. Those scenarios are full IP network, full MPLS network, and hybrid IP/MPLS network. The simulation results point up the pros and cons of each scenario in terms of end-to-end delay, delay variation, packet loss ratio, packet delivery ratio, and voice MOS value. In short, full MPLS network provides the best performance for multimedia traffic but close results can be achieved using hybrid IP/MPLS network.

Key words: MPLS, QoS, TE, MPLS TE, MPLS DiffServ TE.

ACKNOWLEDGEMENT

All praise is due to Allah, Most Merciful, Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I would first like to thank my supervision committee Prof.Dr. Salwa Hussein Elramly and Ass.Prof. Hussein Abd el Aaty El sayed for their great help and dedication through the duration of this work. I learned so many valuable things from them, but above all, they taught me how to be devoted to research and how to help others. I am in great debt to Prof.Dr. Adel El Henawi, Eng. Ahmed Talaat, Eng. Rofida, Eng. Mohamed Omar, and Eng.Sara Hassan for their great help during my study in Ain Shams university.

I would also like to thank Ass. Prof. Col. Ahmed Hafiz for his continuous support and enthusing help and very helpful comments during work and thesis writing. And Eng. Ahmed yousry, Eng. Ismail Kamal, and Eng. Abd-elrahman Elakhdar from Egyptian Armed Force for their support and encouragement.

Last but not least, I would like to thank my wife and my mother. Their patience, care, and love are what guided me through whole life.

Contents

	СН	APTER 1: INTRODUCTION	22
	1.1 Introduction		
	1.2	Real Time Traffic	23
	1.2	.1 Real-Time Traffic Requirements	24
	1.3	Quality of Service	26
	1.3	.1 Levels of QoS	27
	1.4	Performance Measures	28
	1.4	.1 Bandwidth	28
	1.4	.2 Packet Delay	29
	1.4	.3 Jitter	29
	1.4	.4 Packet Loss	30
	1.4	.5 The E-Model	31
	1.5	IP QoS	31
	1.5	.1 Type of Service (ToS)	32
	1.5	.2 Differentiated Services (DiffServ)	33
	1.5	.3 Resource Allocation	38
	1.5	.4 Congestion Avoidance and Packet Drop Policy	39
	1.5	.5 Service Level Agreements (SLAs)	40
	1.6	Multiprotocol Label Switching (MPLS)	40
	1.6	.1 MPLS Benefits:	41
	1.7	Thesis Objectives and Overview	44
	1.8	Related works	44
)	СН	APTER 2: MPLS BACKGROUND	47
	2.1	Introduction	48

2.2	Ove	erview	49
2.2	2.1	IP Control and Data Planes	49
2.2	2.2	MPLS Control and Data Planes	50
2.2	2.3	Relationships between IP and MPLS Control Planes	52
2.3	MP	LS Architecture	53
2.4	MP	LS Header	55
2.4	4.1	Label Stacking	56
2.4	4.2	Encoding of MPLS	57
2.5	Lab	el Assignment and Distribution	58
2.5	5.1	Downstream Label Allocation (unsolicited downstream).	59
2.5	5.2	Downstream Label Allocation on Demand (solicited	
do	wnstr	eam)	60
2.5	5.3	Upstream Label Allocation	60
2.5	5.4	Label control mode	60
2.5	5.5	Liberal and Conservative Retention Modes	60
2.5	5.6	Label Space	61
2.5	5.7	Label Swapping	61
2.5	5.8	Penultimate Hop Popping	62
2.6	LAI	BEL LOOKUP	63
2.0	5.1	The Next Hop Label Forwarding Entry (NHLFE)	65
2.0	5.2	FEC-to-NHLFE Map (FTN)	66
2.0	5.3	Incoming Label Map (ILM)	66
2.0	5.4	Aggregation	67
2.0	6.5	Label Merging	68
2.0	6.6	Hop by Hop and Explicit Routing	68
2.7	LA	BEL DISTRIBUTION PROTOCOL	68
2.	7.1	Label Distribution Protocol (LDP)	69

	2.7	.2	LDP Messages	69
	2.7	.3	LDP Messages Structure	70
	2.7	.4	TLV	71
2.7.5		.5	LDP Message Format	73
	2.7	.6	Relationship between LDP and the IGP	73
	2.7	.7	LDP key properties	74
	2.8	RS	VP	75
	2.9	Co	nclusion	79
3	СН	IAPT	TER 3: MPLS QoS and TE	80
	3.1	Intı	roduction	81
	3.2	Mu	ltimedia over IP Networks Routing Problems	81
	3.3	MP	LS QoS	83
	3.4	MP	PLS Traffic Engineering (TE)	84
	3.5	Set	ting up Traffic-Engineered Paths Using MPLS-TE	86
	3.5	.1	LSP priorities and preemption	86
	3.5	.2	Resource class and Constrains	87
	3.5	.3	Path Calculation – CSPF	88
	3.5	.4	Load Balancing in MPLS	90
	3.6	Dif	ferentiated Service-Aware Traffic Engineering	91
	3.6	.1	Class types	91
	3.6	.2	Overbooking	94
	3.7	Pro	tection	95
	3.7	.1	The Failure Impact	95
	3.7	.2	Fast Reroute	96
	3.7	.3	Link Protection	97
	3.7	.4	Node Protection	97
	3.7	.5	Bandwidth Protection	98

	3.7.	6	Performance metrics and analysis	99
	3.8	Cor	nclusion	101
4	Cha	pter	4: SIMULATIONS	102
	4.1	Intr	oduction	103
	4.2	OPI	NET Simulator	104
	4.2.	1	OPNET Structure	104
	4.2.	2	Programming in OPNET	105
	4.3	OPI	NET Simulation Models and Results	106
	4.3.	1	Small Network Model	106
	4.3.	2	Large network	114
	4.3.	3	Heavy Load Scenario	133
	4.3.	4	Increasing background traffic	139
	4.3.	5	MPLS QoS Configuration Scenario	142
	4.4	Inte	grating IPv4 Networks to MPLS Networks	145
	4.4.	1	Part One: Light Load	147
	4.4.	2	Part two: Heavy Load	155
	4.5	CO	NCLUSION	159
5	Cha	pter	5: Conclusion and Future Work	161
	5.1	Cor	nclusion	162
	5.2	Futi	ure Work	164

List of Figures

Figure 1.1: Typical Data Bandwidth Utilization	. 24
Figure 1.2: Video Conferencing Bandwidth Utilization	. 25
Figure 1.3: IP ToS Field	. 32
Figure 1.4: DSCP Field	. 34
Figure 1.5: DiffServ Domain	. 36
Figure 1.6: TCA Stages.	. 37
Figure 1.7: Policing and shaping. (a) Policing, (b) Shaping	. 38
Figure 2.1: Basic Operation of an MPLS Network	
Figure 2.2: IP Control Plane and Data Plane	. 50
Figure 2.3: MPLS Control Plane and Data Plane	. 51
Figure 2.4: Relationships between IP and MPLS Control Planes	
Figure 2.5: Two Different LSPs in MPLS Domain	. 55
Figure 2.6: MPLS label	
Figure 2.7: Label Stack Structure	. 57
Figure 2.8: MPLS Encoding over POS Links	. 57
Figure 2.9: MPLS Encoding over ATM Links	. 58
Figure 2.10: MPLS Core Network	. 59
Figure 2.11: LSR label space. (a) Per-Interface Label Space, (b) Per-	
Platform Label Space	. 61
Figure 2.12: Label Swapping	. 62
Figure 2.13: MPLS LIB	. 64
Figure 2.14: MPLS LFIB	. 65
Figure 2.15: Relationship between NHLFE, FTN, and ILM	
[27]	. 67
Figure 2.16: LDP Path Setup Messages	. 69
Figure 2.17: LDP Header Structure	. 70
Figure 2.18: TLV Format	. 71
Figure 2.19: Generic Label TLV	. 72
Figure 2.20: FEC TLV	. 72
Figure 2.21: LDP Message Format	. 73
Figure 2.22: Illustration of the RSVP PATH and RESV Message	
Exchange	. 78
Figure 3.1: Traffic Flows in an OSPF Network	

Figure 3.2: MPLS Flows, Trunks, and LSP Mapping	85
Figure 3.3: Using Link Coloring.	89
Figure 3.4: Maximum Allocation Model	92
Figure 3.5: Russian Dolls Model	93
Figure 3.6: Comparison of Link Size Overbooking and Local	
Overbooking Multipliers	95
Figure 3.7: Link Protection NHOP Backup Tunnel	97
Figure 3.8: Node Protection NHOP Backup Tunnel	98
Figure 3.9: Link/Node Protection with Pure FRR	00
Figure 4.1: Small Network	07
Figure 4.2: Small network scenario video traffic results. (a) Packet dela	ıy
variation, (b) End – to – End Delay	111
Figure 4.3: Small Network Scenario Video Conference Traffic Receive	ed.
	111
Figure 4.4: Small network scenario VoIP traffic results. (a) Packet dela	ıy
variation, (b) End-to-End Delay	112
Figure 4.5: Small Network Scenario VoIP Traffic Received	112
Figure 4.6: Large Network	15
Figure 4.7: Large network light load scenario (a) User Subnet, (b) Serv	er
Subnet 1	16
Figure 4.8: Large network light load scenario MPLS video traffic result	ts,
(a) Packet Delay Variation, (b) Packet End-to- End Delay	121
Figure 4.9: Large Network Light Load Scenario MPLS Video Traffic	
received1	122
Figure 4.10: Large network light load scenario voice traffic results, (a)	
MOS Value, (b) Packet Delay Variation (0.5 µsec for MPLS, 0.1µsec f	or
IP)	132
Figure 4.11: Large Network Light Load Scenario Voice Packet End-to-	-
End Delay	132
Figure 4.12: Heavy Load Network	134
Figure 4.13: Large network heavy load scenario (a) Subnets 1& 2 LAN	ls,
(b) Additional Subnets LANs.	135
Figure 4.14: Large network heavy load scenario MPLS video traffic	
results, (a) Packet Delay Variation, (b) Packet End-to- End Delay 1	137

Figure 4.15: Large Network Heavy Load Scenario MPLS Video Traffic
Sent and Received 137
Figure 4.16: Large network heavy load scenario voice traffic results, (a)
MOS Value, (b) Packet Delay Variation
Figure 4.17: Large Network Heavy Load Scenario Voice Packet End-to-
End Delay
Figure 4.18: Background Traffic Added to the Network Verses Time. 139
Figure 4.19: Large network heavy load with background traffic scenario
MPLS video traffic results, (a) Packet Delay Variation, (b) Packet End-
to-End Delay
Figure 4.20: Large Network Heavy Load Scenario MPLS Video Traffic
Transmitted and Received. 140
Figure 4.21: Large network heavy load scenario with background traffic
voice traffic results, (a) MOS Value, (b) Packet Delay Variation 141
Figure 4.22: Large network heavy load scenario with background traffic
voice traffic results (a) Packet End-to-End Delay, (b) Traffic Received
Figure 4.23: QoS configuration scenario MPLS video results, (a) Packet
Delay Variation, (b) Packet End-to-End Delay
Figure 4.24: QoS Configuration Scenario MPLS Video Traffic Received
and Packet Loss
Figure 4.25: QoS configuration scenario voice results, (a) MOS Value,
(b) Packet Delay Variation. 144
Figure 4.26: QoS configuration scenario voice results, (a) Packet End-to-
End Delay, (b) Received Traffic
Figure 4.27: Simulation Network
Figure 4.28: MPLS, IP, and mixed network light load scenario video
results. (a) Packet Delay Variation, (b) Packet End-to-End Delay 150
Figure 4.29: MPLS, IP, and mixed network light load scenario video
traffic in bytes. (a) Traffic Sent, (b) Traffic Received
Figure 4.30: MPLS, IP, and mixed network light load scenario voice
results. (a) Packet Delay Variation, (b) End-to-End Delay
Figure 4.31: MPLS, IP, and mixed network light load scenario voice
results. (a) Voice Traffic Sent, (b) Voice Traffic Received

Figure 4.32: MPLS, IP, and mixed network heavy load scenario video	
results. (a) Packet Delay Variation, (b) End-to-End Delay	156
Figure 4.33: MPLS, IP, and mixed network heavy load scenario video	
conference traffic. (a) Video Packet Sent, (b) Video Packet Received	156
Figure 4.34: MPLS, IP, and mixed network heavy load scenario voice	
results. (a) Packet Delay Variation, (b) Packet End-to-End Delay	157
Figure 4.35: MPLS, IP, and mixed network heavy load scenario voice	
total voice packets (a) Transmitted Packets, (b) Received Packets	158

List of Tables

Table 1.1: Different User Applications QoS Requirements	28
Table 1.2: MOS Value	31
Table 1.3: Precedence Values	32
Table 1.4: ToS Subfield Values(4-bits indicates packet classification	ns) 33
Table 1.5: AF Code-points	35
Table 3.1: Comparison between MAM and RDM	93
Table 3.2: Level of Protection of Different Traffic Classes	96
4.1: Types of Small Network Scenario Traffic	107
Table 4.2: Small Network Scenario MPLS Network LSPs Details	109
Table 4.3: Traffic Mapping Configuration for Each LER at MPLS	
Network	110
Table 4.4: Node V11 load	113
Table 4.5: Large Network Light Load Scenario Network Load	116
Table 4.6: Large Network Light Load Scenario MPLS Network LSI	Ps
Details	117
Table 4.7: Traffic Mapping Configuration for Each LER at MPLS	
Network	118
Table 4.8: Large Network Light Load Scenario MPLS Video Packe	ts
Transmitted and Received	122
Table 4.9: Large Network Light Load Scenario MPLS Network Lab	oel
Value	
Table 4.10: Large Network Light Load Scenario Voice Total Packet	t Loss
	132
Table 4.11: Large Network Heavy Load Scenario MPLS Network I	LSPs
Details	135
Table 4.12: Large Network Heavy Load Scenario Traffic Mapping	
Configuration for Each LER at MPLS Network	136
Table 4.13: Large Network Heavy Load Scenario Total Voice Pack	et
Loss	139
Table 4.14: Large Network Heavy Load Scenario with Background	
Traffic Total Voice Packet Loss	141
Table 4.15: ToS Value for Simulation Traffic	142
Table 4.16: OoS Configuration Scenario Total MPLS Packet Loss	143