

بسر الله الرحمن الرحيم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من 15-25 مئوية ورطوبة نسبية من 20-40% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بالرسالة صفحات لم ترد بالاصل

MOLECULAR GENETIC STUDIES ON IRRADIATED WHEAT PLANTS

ΒY

OSAMA MOSEILHY SALEH

B.Sc. Agric. Sci. (Genetics), Ain Shams Univ., 1992 M.Sc. Agric. Sci. (Genetics), Ain Shams Univ., 1998

A thesis submitted in partial fulfillment of the requirements for the degree of

> DOCTOR OF PHILOSOPHY in AGRICULTURAL SCIENCE (GENETICS)

Department of Genetics Faculty of Agriculture Ain Shams University

2002

•

MOLECULAR GENETIC STUDIES ON IRRADIATED WHEAT PLANTS

BY

OSAMA MOSEILHY SALEH

B.Sc., Agric. Sci. (Genetics), Ain Shams Univ., 1992 M.Sc. Agric. Sci. (Genetics), Ain Shams Univ., 1998

This thesis for Ph.D. degree has been approved by :

Prof. Dr. Haneya A. El-Etriby

Director of Agricultural Genetic Engineering Research Institute, (AGERI), Agricultural Research Center, (ARC), Giza, Egypt

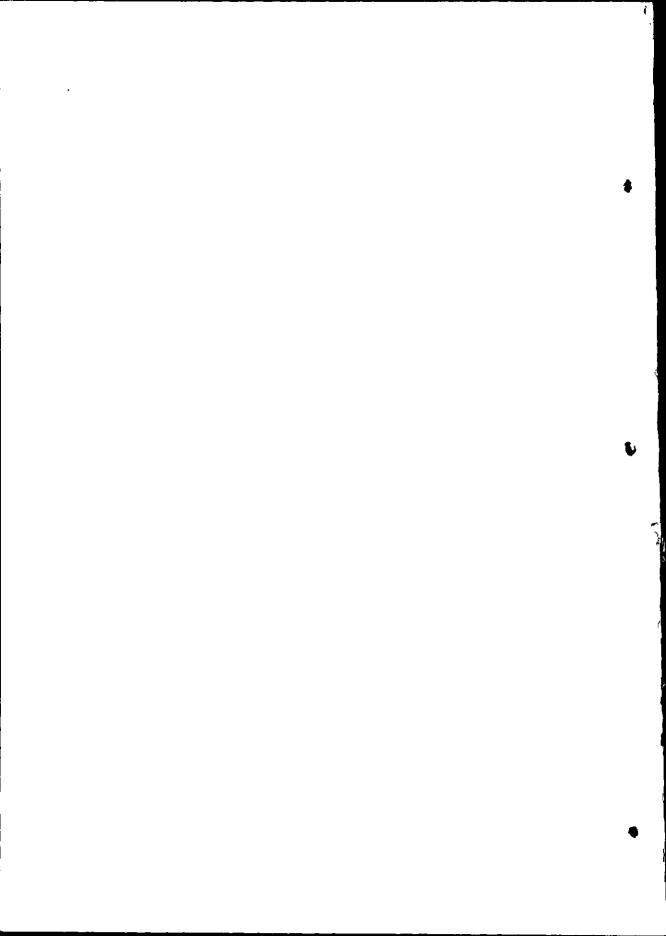
Prof. Dr. A. Bahieldin

Professor of Molecular Genetics, Dept. of Genetics, Fac. of Agric., Ain Shams University

Prof. Dr. Eman M. Fahmy

Professor of Molecular Genetics, Dept. of Genetics, Fac. of Agric., Ain Shams University.

Prof. Dr. F.M. Abdel-Tawab


Professor of Molecular Genetics, Dept. of Genetics, Fac. of Agric., Ain Shams University. (Supervisor) A. A. El Sterby

A. Bahido

Eman M. Fahmy

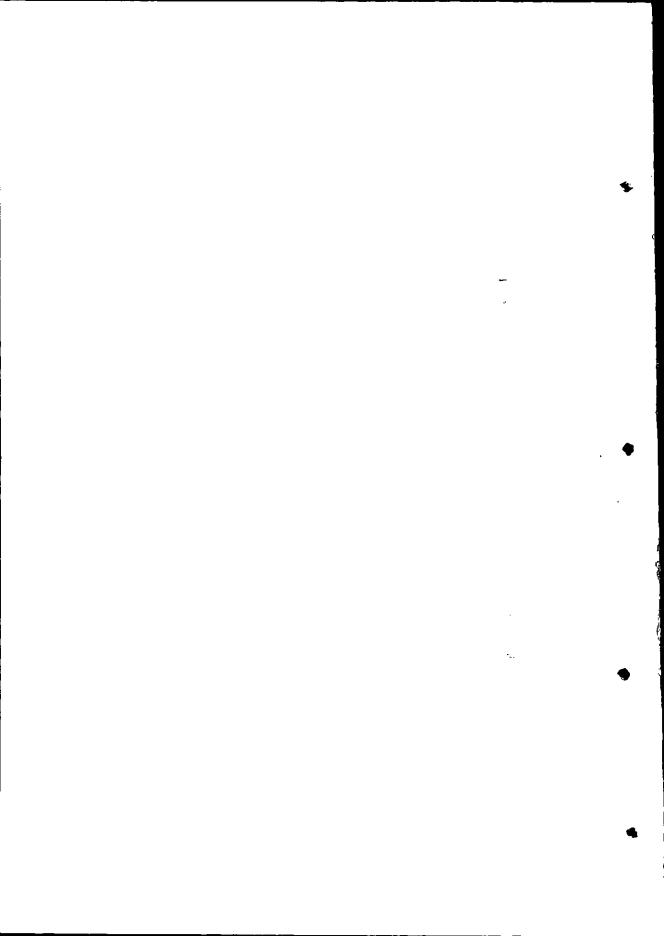
FM. Abdel Towns

Date of examination 15/7/2002

MOLECULAR GENETIC STUDIES ON IRRADIATED WHEAT PLANTS

BY

OSAMA MOSEILHY SALEH


B.Sc. Agric. Sci. (Genetics), Ain Shams Univ., 1992 M.Sc. Agric. Sci. (Genetics), Ain Shams Univ., 1998

Under the Supervision of

Prof. Dr. F.M. Abdel-Tawab Prof. of Molecular Genetics, Dept. of Genetics, Fac. of Agric., Ain Shams University.

Prof. Dr. Eman M. Fahmy Prof. of Molecular Genetics, Dept. of Genetics, Fac. of Agric., Ain Shams University.

> Dr. Asmahan A. Mahmoud Assoc. Prof. Of Genetics, Dept. of Natural Products Research, National Center for Radiation Research and Technology, Atomic Energy Agency.

ABSTRACT

Osama Moseilhy Saleh, Molecular genetic studies on irradiated wheat plants, Unpublished Doctor of Philosophy Dissertation, Genetics Dept., Fac. Agric., Ain Shams Univ., 2002.

Composite genotype (octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress.

Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite.

From eight Egyptian hexaploid wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively). They were evaluated along with their F_1 and F_2 for their relative drought tolerance for some yield-related traits.

Bulked segregant analysis developed some RAPD and SSR markers with different primers, which were considered as molecular markers for drought tolerance in wheat.

Hal2-like gene was introduced into Egyptian wheat cultivar G-164 via microprojectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal2-like genes in the genomic background of the two transgenic plants.

Key words: Triticum aestivum, drought tolerance, yield-related traits, RAPD-PCR, SSR, bulked segregant analysis (BSA), gamma irradiation, immature embryos, transformation, biolistic bombardment, Hal2-like, bialaphos, Southern blotting.

ACKNOWLEDGMENT

First and foremost, I feel always indebted to

ALLAH

the most beneficent and merciful

I would like to express my deep thanks and gratitude to Prof. Dr. Fatthy Mohamed Abdel-Tawab, Professor of Molecular Genetics, Faculty of Agriculture, Ain Shams University for his kindly, continuous and close supervision, suggesting the problem, and every possible help and continuous encouragement he offered during the course of this investigation and writing the manuscript.

I would like to express my deepest gratitude and sincere appreciation to Prof. Dr. Eman Mahmoud Fahmy, Professor of Molecular Genetics, Faculty of Agriculture, Ain Shams University for her continuous and kindly supervision, great help, diligent work during the writing of manuscript and valuable comments through the course of this study.

I would like to express my sincere thanks to Dr. Asmahan Ahmed Mahmoud Associate Professor of Genetics, Natural Products Research, Biotechnology Section, National Center for Radiation Research and Technology, Atomic Energy Agency for her supervision and continuous encouragement during this work.

I would like to express my deepest thanks to the authorities of the Agricultural Genetic Engineering Research Institute (AGERI) of the Agricultue Research Center (ARC), especially Prof. Dr. Magdy Ahmed Madkour and Prof. Dr. Haneya Abbass El-Etriby for providing access to the facilities of the Institute during this study.

I can't express my feeling and deep thanks to Prof. Dr. Ahmed Bahieldin, Professor of Molecular Genetics, Ain Shams University and Senior of Environmental Stress Lab (ESL) at AGERI for his energetic guidance, unlimited and valuable assistance in performing this investigation and conclusive instructions throughout the course of this study.

I would like to express my deep thanks to Dr. Hesham Mahfouz, Senior Scientist of ESL at AGERI for his kindly and useful help during this study.

I must refer to my colleagues during this work and express my deepest thanks for all of them: at AGERI; Dr. Hala Eissa, Ahmed Shokry, Ahmed Shawky, Ahmed Ramadan, Sameh El-Sayed, Al-Safa El-Sherif, Rabab Ibrahim and Gamal El-Sayed; at Genetics Department of Faculty of Agriculture; Ahmed Fayez, Rashad Mahmoud, Amira El-Shoney, Sherif Edris and Mohamed Hassan.

Also, I would thank all the stuff at Department of Genetics, Faculty of Agriculture, Ain Shams University; all the stuff at Department of Natural Products Research, Biotechnology Section, National Center for Radiation Research and Technology, Atomic Energy Agency and at Agricultural Genetic Engineering Institute (AGERI) for their continuous encouragement.

Finally, I would like to express my deep thanks to my family, my parents, my brothers and my wife for their continuous support and interest encouragement during this investigation.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
1. Yield-related traits	4
1.1. Irradiation effect	4
1.2. Drought effect	6
2. Molecular markers	10
2.1. Randomly Amplified Polymorphic DNA (RAPD) markers	10
2.2 Simple sequence repeat (SSR) markers	23
3. Wheat Transformation	30
III. MATERIALS AND METHODS	42
1. Materials	42
2. Methods	42
2.1. Radiation experiments	42
2.1.1 Composite Formation	42
2.1.2 Drought stress experiments	43
2.1.2.I Sand culture experiment	43
2.1.2.2. Field experiment	44
2.2. Screening experiments for wheat cultivars	44
2.2.1 Sand culture experiment	44
2.2.2 Field experiment	45
2.3. Main experiment	45
2.4. Statistical analysis	45
2.5. Molecular analysis	46
2.5. 1. Genomic DNA extraction	46
2.5.2. RAPD-PCR conditions	47
Sample preparation	
2.5.3. SSR-PCR conditions	
2.6. Wheat transformation	
2.6.1. Plant material	
2.6.1.1. Plant expression vector	51
2.6.2 Transformation methods	52