Study Of The Pattern Of Bronchial Asthma Among Outpatients Clinic At Sohag And Akhmeem Chest Hospitals

Thesis Submitted for Partial Fulfillment of Master Degree In Chest Diseases and Tuberculosis

Osama Maher Elkes botros

M.B.B.CH

Supervised By

Prof. Dr./ Mohamed awad tageldin

Professor of Chest Diseases

Faculty of Medicine

Ain Shams University

Dr./ Khaled mohamed wagih
Assistant Prof. of Chest Diseases
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University

List of contents

Page
Acknowledgement
List of Tables
List of Figures
Introduction
Aim of the work 5
Review of Literature:
I - Definition and risk factor of Bronchial asthma°
II - Mechanisms of asthma
III- Diagnosis of bronchial asthma ۲۹
IV- Clinical assessment of asthma ٤١
V- Medical treatment of asthma
VI- Management and prevention of asthma
Subjects and methods
Results
Discussion
Summary and conclusion
Recommendations
References

Acknowledgment

First and foremost, praise and thanks must be to ALLAH who suides me throughout life.

I would like to express my deepest gratitude and thanks to Professor Dr. Mohamed Awad Tageldine, professor of chest diseases, faculty of Medicine, Ain Shams University, for his continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also I am really deeply grateful to Dr. Khaled Mohamed wagih assistant Professor of chest diseases, faculty of medicine, Ain Shams University, for his great help, valuable time, careful supervision and continuous advices and his efforts that makethis work comes to light.

I am really thankful to everyone who took part in exhibiting this work to light.

List of abbreviations

ACE Angiotensin converting enzyme inhibitors

i	
ACT	Asthma control test
AIA	Aspirin induced asthma
AIRE	Asthma insight and reality study
ARIA	Allergic rhinitis and its impact on asthma
ATAQ	Asthma therapy assessment questionnaire
ATS	American thoracic society
BHR	Bronchial hyper responsiveness
CDC	Center for disease control and prevention
COPD	Chronic obstructive pulmonary diseases
cysLR	Cystinyl leukotrienes receptors
DALYS	Disability adjusted life years
ED	Emergency department
EIA	Exercise induced asthma
ETS	Environmental tobacco smoke
FEV	Forced expiratory volume in \ second
FVC	Forced vital capacity
GC	Glucocorticoids
GER	Gastro esophageal reflux disease
GM-CSF	Granulocytes macrophages colony stimulating factor
GRS	Glucocorticoids receptors
HFA	Hydroflouroalkane
ICS	Inhaled corticosteroids
IL '	Interleukin \
LABA	Long acting B ^r agonists
LMS	Leukotrienes modifiers

List of abbreviations (Cont.)

LTS	Leukotrienes
MDC	Macrophages derived chemokines
MDI	Metered dose inhaler
NA	Nocturnal asthma
NO	Nitric oxide
NO	Nitric oxide
OA	Occupational asthma
OSA	Obstructive sleep apnea
PEF	Peak expiratory flow
RSV	Respiratory syncytial virus
SABA	Short acting B [†] agonists
SMART	Salmeterol multicenter asthma research trial
TARC	Thymus and activation regulated chemokines
TH	T helper \ cell
ТН	T helper ^۲ cell
TNF a	Tumor necrosis factor α
U.K	United Kingdom
VCD	Vocal cord dysfunction
VEGF	Vascular endothelial growth factor

List of Tables

		Page
Table	1: Methods for determining asthma in epidemiological studies	Y
Table	Y: Diagnosis of asthma	. ۲۹
Table	۳: Classification of asthma severity	٤٦
Table	4: Classification of asthma severity after treatment	٤٧.
Table	o: Classification of asthma control	٤٩
Table	7: Estimated Equipotent Daily Doses of Inhaled Glucocorticosteroids for Adults	. 00
Table	Y: Assessment of severity of asthma exacerbation	. ۸۹
Table	$^{\Lambda}$: Distribution of studied cases as regard general data $^{9\Lambda}$	
Table	٩: Distribution of studied cases as regard patient sex	1.0
Table	\'·: Distribution of studied cases as regard patient age	1.0
Table	11: Distribution of studied cases as regard occupation	١٠٦
Table	17: Distribution of studied cases as regard area of study	١.٧
Table	۱۳: Distribution of studied cases as regard smoking	١٠٨
Table	۱٤: The mean of smoking and ex-smoking periods	١٠٨
Table	\o: Distribution of studied cases as regard level of asthma control	١٠٩
Table	17: Distribution of studied cases as regard symptoms of asthma	111
Table	Y: Distribution of studied cases as regard precipitating factors	117
Table	۱۸: Distribution of studied cases as regard usage of inhalation therapy	115
Table	19: Distribution of studied cases as regard type of device	112
Table	Y: Distribution of studied cases as regard education of use of inhalation device	115
Table	71: Distribution of studied cases as regard complications of inhalation therapy	110

List of Tables (Cont.)

		Pa
Γable	77: Distribution of studied cases as regard type of treatment	۱۱۸
Γable	۲۳: Distribution of studied cases as regard family history	۱۲۱
Table	Y: Distribution of studied cases as regard examination &investigations	١٢٢
Table	Yo: Relation between the patient sex and level of asthma control	170
able	77: Relation between occupation and level of asthma control	170
able	YV: Relation between smoking and level of asthma control	١٢٧
able	۲۸: Relation between breathlessness with effort and level of asthma control	۱۲۸
able	۲۹: Relation between cough at night and level of asthma control	179
able	**: Relation between precipitating factors and level of asthma control	۱۳.
`able	T: Relation between use of inhalation therapy and level of asthma control	۱۳۱
able	TY: Relation and between type of inhalational device and level of asthma control	۱۳۲
able	۳۳: Relation between education of use of inhalation device and level of asthma control	۱۳۳
able	۳٤: Relation between complications of inhalation therapy and level of asthma control	170
able	۳۰: Relation between family history and level of asthma control	١٣٦
able	The Relation between the chest wall diameter and level of asthma control	127
able	TY: Relation between the auscultation of ronchi and level of asthma control	۱۳۸
able	۳۸: Relation between radiological findings and level of asthma control	189

List of Tables (Cont.)

		Page
Table	rq: Relation between the areas of study and level of asthma control	١٤٠
Table	Expiatory flow in well controlled asthma	1 £ Y
Table	En: Comparison of pre and post-bronchodilator peak expiatory flow in not well controlled asthma	1 £ Y
Table	EY: Comparison of pre and post-bronchodilator peak expiatory flow in poorly controlled asthma	1 2 4

List of Figures

Pa	ge
Figure 1: How asthma affects your airways	
Figure 7: Changes in pre and post bronchodilator FEV curve in asthma	
Figure Υ : Management approach based on control in adults $\Upsilon \Lambda$	
Figure 4: Distribution of studied cases as regard patient sex	
Figure o: Distribution of studied cases as regard occupation	
Figure 7: Distribution of studied cases as regard area of study 1.1	
Figure \forall : Distribution of studied cases as regard smoking $\land \land$	
Figure A: Distribution of studied cases as regard level of asthma control	
Figure 9: Distribution of studied cases as regard Breathlessness with effort	
Figure ' ·: Distribution of studied cases as regard Cough at night ' \ '	
Figure '1: Distribution of studied cases as regard precipitating factors	
Figure 17: Distribution of studied cases as regard Inhalation therapy	
Figure '": Distribution of studied cases as regard Type of device '\\	
Figure 15: Distribution of studied cases as regard Education of use	
Figure 'c: Distribution of studied cases as regard Complications of inhalation therapy	
Figure 17: Distribution of cases use Xanthines	
Figure ۱۷: Distribution of cases use Bronchodilators	
Figure ۱۸: Distribution of cases use Antibiotics	
Figure ۱۹: Distribution of cases use Steroids	
Figure Y ·: Distribution of studied cases as regard family history YY	
Figure 71: Distribution of studied cases as regard Antroposterior diameter of chest wall	

List of Figures (Cont.)

		Page
Figure ۲۲: Distribution	of cases as regard rhonchi	١٢٣
Figure ۲۳: Distribution	of cases as regard Blood pressure	١٢٣
Figure ۲5: Distribution	of cases as regard Blood Sugar	١٢٣
Figure Yo: Distribution	of cases as regard Blood Picture	١٢٤
Figure ۲٦: Distribution	of cases as regard Radiological findings	175
Figure YY: Relation be control	between occupation and level of asthma	١٢٧
	ween smoking and level of asthma control	
	tween breathlessness with effort and level ontrol	179
control	etween cough at night and level of asthma	۱۳.
Figure ⁷¹ : Relation be	etween precipitating factors and level of trol	
Figure TY: Relation b	between inhalation therapy and level of trol	
Figure ^{۳۳} : Relation b	etween types of inhalational device and nma control	
Figure 75: Relation 1	between education of use of inhalation level of asthma control	
Figure \mathfrak{Po} : Relation be	etween complications of inhalation therapy f asthma control	
Figure ⁵⁷ : Relation be	tween family history and level of asthma	
Figure ^۳ V: Relation be	tween the chest wall diameter and level of trol	١٣٨
Figure TA: Relation be	tween auscultation of ronchi and level of trol	
Figure ^{٣٩} : Compariso well control	n of pre and post-bronchodilator PEF in lled asthma	1 £ Y
Figure : Comparison not well con	n of pre and post-bronchodilator PEF in ntrolled asthma	١٤٣
Figure 11: Compariso	on of pre and post-bronchodilator PEF in rolled asthma	

INTRODUCTION

For some patients, the development of chronic inflammation may be associated with permanent alterations in the airway structure referred to as airway remodeling that are not prevented by or fully responsive to currently available treatments (*Holgate and Polosa*, '...'). Therefore, the paradigm of asthma has been expanded over the last '· years from bronchospasm and airway Inflammation to include airway remodeling in some persons (*Busse and Lemanske*, '...').

About "·· million people have asthma worldwide, and the prevalence has increased over recent decades mainly among children living in industrialized countries and may also be increasing in developing countries (*Masoli et al.*, "··• ()

١

Asthma occurs at high frequency in young and older adults. Several factors that influence the prevalence of asthma include obesity, atopy and allergic rhinitis, genetic, family history, exposure to allergens at an early age, and smoking history. Tobacco smoking makes asthma more difficult to control, results in more frequent exacerbations and hospital admission, and produces a more rapid decline in lung function and increased risk of death (*Thomson et al.*, **...**).

For initiating treatment, asthma severity should be classified, and the initial treatment should correspond to the appropriate category of severity. Once treatment is established, the emphasis is on assessing asthma control to determine if the goals for therapy have been met and if adjustments in therapy would be appropriate. When asthma is not controlled it is associated with significant asthma burden (*Fuhlbrigge et al.*, *\(\(\tau\cdot\)\), decreased quality of life (*Schatz et al.*, *\(\tau\cdot\)\), and increased health care utilization (*Vollmer et al.*, *\(\tau\cdot\)\), and *Schatz et al.*, *\(\tau\cdot\)\).

Quality of life, perceptions of asthma control, and depression are psychosocial factors worth assessing over time, because they may affect directly the ability to engage in self-management of asthma and affect indirectly asthma morbidity and mortality outcomes. Both asthma specific and generic quality of life measures are associated with patients' perceived control of asthma ($Katz\ et\ al.,\ r\cdot\cdot r$).