THE ROLE OF CARDIOVASCULAR MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF DIFFERENT CARDIOMYOPATHIES

Essay
Submitted in partial fulfillment of a

M.Sc. Degree in Diagnostic Radiology

By

Tamer Hassan Mohamed Al-Zamarany

M.B. B.Ch. Cairo University

Supervised By

ASS. PROF. DR. SEIF EL DIN ABAZA

Assistant Professor of Diagnostic Radiology Faculty of Medicine, Cairo University

DR. NOHA HOSSAM EL DIN BEHAIRY

Lecturer of Diagnostic Radiology Faculty of medicine, Cairo University

Faculty of Medicine
Cairo University
2008

ABSTRACT

(Key Words: Cardiovascular Magnetic Resonance Imaging- CMR-Cardiomyopathies)

Cardiovascular magnetic resonance imaging (CMR) is able to diagnose and differentiate cardiomyopathies in a single study. The assessment of essential information such as alterations of myocardial and ventricular geometry and function is possible with a high degree of accuracy and reproducibility, thereby enabling the cardiologist to increase the safety of therapeutic decisions.

The aim of this study is to review the role of Cardiovascular magnetic resonance imaging in the diagnosis of different cardiomyopathies.

Acknowledgment

I would like to express my deepest gratitude and appreciation to Ass. Prof. Dr. Seif El Din Abaza, Ass. Professor of Diagnostic Radiology, Faculty of Medicine – Cairo University and to Dr. Noha Hossam El Din Behairy, Lecturer of Diagnostic Radiology, Faculty of Medicine – Cairo University for their generous help, valuable guidance and great care throughout this work.

Finally, I would like also to express my thanks to my colleagues for their support and my family for their help.

Table of Contents

	Page
List of Abbreviations	i
List of Figures	V
List of Tables	vii
Introduction and Aim of the work	viii
Radiological Anatomy of the Heart by MRI	1
Pathophysiology of Cardiomyopathies	19
Techniques	36
Techniques of fast MR Imaging for Studying the Heart	36
Assessment of Heart Morphology and Function	51
MRI Radiological Diagnosis of Cardiomyopathies	69
Other Modalities Used for Evaluation of Cardiomyopathies	92
Summary and conclusion	105
References	107
Arabic summary	

List of Abbreviations

ACR American College of Radiology

AD Autosomal Dominant

AHA American Heart Association

AO Aorta

AR Autosomal Recessive

ARVC Arrhythmogenic Right Ventricular Cardiomyopathy

ARVD Arrhythmogenic Right Ventricular Dysplasia

CAD coronary artery disease

CEMRA Contrast Enhanced Magnetic Resonance Angiography

CNR Contrast-to-Noise Ratio

CP-MRA Contrast Phase Magnetic Resonance Angiography

CT Computed Tomography

CX Circumflex Coronary a.

DCM Dilated Cardiomayopathy

DE Delayed-contrast Enhancement

DICOM Digital Imaging and Communication in Medicine

ECD Echo Color Doppler

ECG Electrocardiography

EDV End Diastolic Volume

EF Ejection Fraction

EPI Echo Planar Imaging

ESV End Systolic Volume

FA Flip Angle

FFE Fast Field Echo

FGRE Fast GRadient Echo

FIESTA Fast Imaging Employing STeady –State Acquisition

FISP Fast Imaging with Steady-state free Precession

FLASH Fast Low Angle Shot

FOV Field Of View

FS Fat Suppression

FSE Fast Spin Echo

FSE-IR Fast Spin Echo – Inversion Recovery

Gd Gadolinium

Gd-DTPA Gadolinium-diethylenetriamine pentaacetic acid

GRASS Gradient Recalled Acquisition in Steady State

GRE Gradient Echo

HARP Harmonic Analysis of Phase

HCM Hypertrophic Cardiomyopathy

IR Inversion Recovery

IR-GRE Inversion-Recovery Gradient Echo

IR-GRE DE Inversion-Recovery Gradient Echo Delayed Enhancement

IT Inversion delay Time

IV Innominate Vein

IVC Inferior Vena Cava

LA Left Atrium

LAD Left Anterior Descending a.

LM Left Main a.

LPA Left Pulmonary Artery

LPV Left Pulmonary Vein

LV Left Ventricle

MIP Maximum Intensity Projection

MPA Main Pulmonary Artery

MR Magnetic Resonance

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

NEX Number of Excitations

PA Pulmonary Artery

PC Phase Contrast

PDP Phase Difference Processing

PET Positron Emission Tomography

PFR Peak Filling Rate

PCr/ATP Phospho Creatine/Adenosine Triphosphate

PVC-MRI Phase Velocity Cine Magnetic Resonance Imaging

RA Right Atrium

RC Right Coronary

RCM Restrictive Cardiomayopathy

RF Radio Frequency

RIPV Right Inferior Pulmonary Vein

ROI Region Of Interest

RPA Right Pulmonary Artery

RV Right Ventricle

SVC Superior Vena Cava

SE Spin Echo

SENSE SENSitivity Encoding techniques

SMASH Simultaneous Acquisition of Spatial Harmonics

SNR Signal-to-Noise Ratio

SOLVD The Studies of Left Ventricular Dysfunction

SPECT Single Photon Emission Computed Tomography

SPGR SPoiled Gradient Echo

SPGR-ET SPoiled Gradient Echo Train

SSFP Steady State Free Precession (Fiesta, True FISP, Balanced Echo)

STIR Short Time Inversion Recovery

SV Stroke Volume

T1 Longitudinal relaxation time

T2 Transverse relaxation time

TA Time of Acquisition

TE Time to Echo

TI Time of Inversion

TR Time of Repetition

VENC Velocity Encoding

WHO World Health Organization

2D Bi-dimensional

3D Three-dimensional

List of Figures

	Page
Fig. 1.1.a-m	2
Fig. 1.2.a-g	4
Fig. 1.3.a-h	6
Fig. 1.4.	8
Fig. 1.5.	8
Fig. 1.6.	9
Fig. 1.7.	10
Fig. 1.8.a-d	11
Fig. 1.9.	12
Fig. 1.10.a-h	15
Fig. 2.1.	19
Fig. 3.1.	38
Fig. 3.2.a,b	41
Fig. 3.3.	43
Fig. 3.4.	44
Fig. 3.5.a,b	45
Fig. 3.6.a-d	47
Fig. 3.7.a-c	49
Fig. 3.8.a-f	52
Fig. 3.9.a-e	54
Fig. 3.10.a,b	55
Fig. 3.11.a,b	56

Fig. 3.12.a-f	61
Fig. 3.13.	62
Fig. 3.14.a-h	63
Fig. 3.15.	65
Fig. 3.16.	65
Fig. 3.17.a,b	68
Fig. 4.1.	69
Fig. 4.2.	70
Fig. 4.3.a-c	73
Fig. 4.4.	75
Fig. 4.5.a-d	77
Fig. 4.6.a,b	78
Fig. 4.7.a,b	79
Fig. 4.8.a,b	80
Fig. 4.9.	82
Fig. 4.10.	83
Fig. 4.11.a,b	84
Fig. 4.12.	85
Fig. 4.13.	88
Fig. 4.14.a-d	91

List of Tables

	Page
Table 4.1.	87

Introduction

Cardiomyopathies (CM) are a group of chronic progressive diseases in which the dominant feature is direct involvement of the heart muscle with cardiac dysfunction

Based on morphology, Physiology, and etiology they can be divided into four main types; restrictive, hypertrophic, Dilated, and arrhythmogenic right ventricular dysplasia (ARVD). The cardiomyopathies that do no fall into any of these categories are placed in the unclassified section.[1]

Current cardiovascular magnetic resonance (CMR) techniques have much to offer in the evaluation of cardiomyopathies. In most ways the promises made by the "one- stop shop" idea have been realized in this area of cardiac pathology. Magnetic resonance imagining's abilities to combine high resolution imaging of the heart, viability imagining using delayed hyper enhancement imaging, tissue characterization and coronary angiography allowed patients with left ventricular (LV) dysfunction to be characterized completely in one non- invasive sitting.[2]

Restrictive Cardiomyopathy; Restrictive filling and reduced diastolic size of either or both ventricles with normal or near normal systolic function is idiopathic or associated with other disease (e.g. amyloidosis, endomyocardial disease)

Hypertrophic Cardiomyopathy; Left, and/ or right ventricular hypertrophy, often asymmetrical, which usually involves the interventricular septum, mutations in sarcoplasmic proteins caries the disease in many patients.

Dilated Cardiomyopathy; Dilatation and impaired contraction of the left or both ventricles caused by familial/genetic, viral, and/ or immune, alcoholic/

toxic or unknown factors, or is associated with recognized cardiovascular disease.[2]

Arrhythmogenic Right Ventricular Dysplasia; Progressive fibrofatty replacement of the right, and to some degree left ventricular myocardium. Familial disease is common.[3]

Unclassified Cardiomyopathy; Disease that do not fit readily into any category, examples include ventricular non-compaction cardiomyopathy.[4]

Basic Cardiovascular Magnetic Resonance (CMR) are the same as those used for cardiac function study[3]. One approach is to follow the scout with axial T1 WI covering the heart and great vessels. These can be used to identify the left and right ventricle and provide for measurements of the left atrium, pulmonary arteries and thoracic aorta. Two-chamber (2-ch) and four chamber (4-ch) cine magnetic resonance imaging, preferably using breath-hold techniques are planned from the axial images. Short-axis images are then acquired, making sure to completely cover the ventricle from apex to base. Another approach is to use available fluoro or real-time CMR sequences to establish the geometry of the various needed sequences and then follow with diagnostic images.

The evaluation and management of patients who have heart failure and specific cardiomyopathies remains clinically challenging. Essential to the appropriate care of these patients is not only an understanding of the patient's cardiac morphology and function but also identification of pathologic and modifiable substrate.[3]

Aim of the work

To review the role of magnetic resonance imaging in different cardiomyopathies.

Radiological Anatomy of the Heart by MRI

General Features Of The Heart

The heart is a mediastinal structure that lies within the pericardial sac, such that one-third of its bulk is to the right of the midline. The cardiac long axis has oblique orientation in relation to the sagittal plane of the body, with the base in right superior location and the apex extending anterior inferior and to the left in a position called levocardia.

The heart is formed by two atria and two ventricles, which are positioned around the central fibrous body. The atria are in posterior, superior and to the right location and the ventricles located anterior, inferior and to the left. Heart receives the systemic and pulmonary veins as they connect to the right and left atrium, respectively. The cardiac outlet is through the aorta and pulmonary artery.[5]

The cardiovascular system is composed of three segments: atria, ventricles, and great arteries. They are connected in a sequential manner.

Atrium joins the ventricles through the atrioventricular valves. The ventricles connect to the great arteries by the arterial valves.[6]

Cardiovascular magnetic resonance imaging (CMR) shows the cardiovascular morphology through a series of slices obtained from different planes.[7] The following are the standard planes used: (i) transverse axial (Fig.1.1b-m.), (ii) coronal (Fig.1.2b-g. and 1.6.), (iii) two-chamber long axis (Figs.1.3. and1.4.), (iv) four-chamber long axis (Fig.1.5.), (v) left ventricular outflow tract (Figs.1.6. and 1.7.), and (vi) short axis (Fig.1.8b-d.). Special plane sections are needed for visualizing specific areas of the heart, such as the aortic valve/right ventricular outlet view through the crista supraventncularis.[8]