NUMERICAL INVESTIGATION OF AIR FLOW AND THERMAL PATTERN IN TRANSFORMERS ROOMS

by

Eng. Ahmed Abdulnabi Mustafa Shaban
A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

NUMERICAL INVESTIGATION OF AIR FLOW AND THERMAL PATTERN IN TRANSFORMERS ROOMS

by

Eng. Ahmed Abdulnabi Mustafa Shaban

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil

Mechanical Power Engineering Department

Faculty of Engineering Cairo University

Dr. Hatem Omar Haredy

Dr. Taher Mohamed Aboudeif

Mechanical Power Engineering

Mechanical Power Engineering

Faculty of Engineering

Faculty of Engineering

Cairo University

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

NUMERICAL INVESTIGATION OF AIR FLOW AND THERMAL PATTERN IN TRANSFORMERS ROOMS

by

Eng. Ahmed Abdulnabi Mustafa Shaban

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis advisor and Member

Professor of Mechanical Power Engineering - Cairo University

Prof. Dr. Mahmoud Ahmed Fouad

Internal Examinar

Professor of Mechanical Power Engineering –Cairo University

Prof. Dr. Osama Ezzat Abd EL-Latef

External Examinar

Professor of Mechanical Power Engineering –Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

Engineer: Ahmed Abdulnabi Mustafa Shaban

Date of Birth: 26 / 12 / 1981

Nationality: Iraqi

E-mail: ahmadabdulnabee@yahoo.com

Phone.: 01123626374, 009647810146411

Address: Giza, 6 October, second district, Cairo

Registration Date: 01 / 3 / 2014

Awarding Date: / /2016

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Hatem Omar Haredy **Dr.** Taher Mohamed Aboudeif

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil (Thesis main advisor)

Prof. Dr. Mahmoud Ahmed Fouad (Internal examiner)

Prof. Dr. Osama Ezzat Abd-EL Latif (External examiner)

(Faculty of Engineering - Benha University)

Title of Thesis: NUMERICAL INVESTIGATION OF AIR FLOW AND THERMAL PATTERN IN TRANSFORMERS ROOMSROOM

Key Words: Transformer Room, Switchgear, Temperature Distribution, Numerical Investigation

Summary:

This research studies the distribution of temperature 'air flow rate and speed inside the electrical transformer room. Where these transformers are a source of heat is the study of conditioning this room and concentrate on the value of temperatures and velocities near the electrical equipment and the objective of this work is to simulate and analyze air flow and thermal systems Patterns in the transformers room to determine the optimal performance of the ventilation systems. In order to provide a comfortable and good thermal indoor environment with energy efficiency, this increases the efficiency of work of the electrical equipment. the

ACKNOWLEDGMENT

Firstly, I would like to thank **Almighty ALLAH**, whom I owe everything, for his generousness and support through all my life.

I would like to thank **Prof. Essam E. Khalil Hassan Khalil**, **Dr. Hatem Omar Haredy** and **Dr. Taher Mohamed Aboudeif** for their guidance and unremitting encouragement. I am grateful to them, and to all my respectful professors, for mentoring me throughout my graduate study.

Finally, Also I express my thanks and gratitude to **my family** and more specifically of them mentioning **my wife**, who was a help to me throughout my studies

TABLE OF CONTENTS

ACKNOWLEDGMENT	i
LIST OF FIGURES	vii
LIST OF TABLES.	xii
NOMENCLATURE	xii
SYMBOL QUANTITY	xii
GREEK LETTERS	xv
SUPERSCRIPTS AND SUBSCRIPTS	xvi
ABBREVIATIONS	xvii
ABSTRACT	xviii
CHAPTER 1	1
INTRODUCTION	1
1-1 Transformertechnology	1
1-2 Transformer Definition.	1
1-3 Transformers Types	1
1-4 Advantages of dry-type transformer	2
1-5 Problems associated with heat transfer in Transformers	3
1-6 Temperature rise and transformer efficiency	4
1-6-1Cooling Classes for Dry-Type Transformers	4
1-7 Allowable working temperatures	4
1-7-1 Temperature rise definition	4
1-7-2 Limits of Temperature Rise	4
1-7-3 Transformer Hottest-Spot	5
1-7-4 Transformer Efficiency and Temperature Rise	5
1-7-5 Temperature Measurements.	6

1-8 Predicting Thermal Response	6
1-9 Heat Run Tests	7
1-9-1 Purpose of Heat Run Tests	7
1-9-2 Test Methods	7
CHAPTER 2	8
LITERATURE REVIEW	8
2-1 Overview	8
2-2 Papers interested for general flow investigations in enclosed space	9
2-2-1 Prediction of Airflow and Temperature Field in a Room with Convective He	at9
2-2-2 Using CFD to understand the air circulation in a ventilated room	10
2-2-3 Computation of the airflow in a pilot scale clean room using K-ε	
Turbulence models	12
2-2-4 Air flow modeling in a computer room	15
2-2-5 Experimental and numerical study of a full scale ventilated enclosure	17
2-2-6 Airflow analysis in an air conditioning room	21
2-3 Research Papers concerned with Power Transformers	22
2-3 -1 Numerical modeling of thermal processes in an electrical transformer	22
2-3 -2 Numerical study of heat transfer and fluid flow in a power transformer	26
2-3 -3 Numerical and experimental investigation of the air flow and temperature	
Distribution in an industrial room with a large heat source	27
2-3-3-1 Test Room Geometry.	27
2-3-3-2 Measuring Mechanism.	28
2-3-3-3 Measuring Instruments	29
2-3-3-4 In a plane perpendicular to the supply duct	30
2.3.5 Deculte	21

2-3-3-6 In the vicinity of Transformer (1)	33
2-3-3-7 analysis of present results	34
2-3-3-8 General flow in the room	34
2-3-4 Power transformer thermal analysis by using an advanced coupled 3D heat	
Transfer and fluid flow FEM model	35
2-3-4-1 Proposed methodology	36
2-3-4-2 Software implementation.	37
2-3-5 Numerical modelling of natural convection of oil inside distribution transform	ners38
2-3-5-1 Description of ONAN distribution transformers	39
2-3-5-2 Mathematical model	40
2-3-5-3 Boundary Conditions	41
2-3-5-4 Result and Discussion	43
2.4 Summary and Scope of present work	44
CHAPTER 3	45
GOVERNING EQUATIONS	45
3-1 Introduction.	45
3-2 Governing Equations	46
3-2-1 General	46
3-3 Grid Generation and Mesh Criteria.	70
3-4 Discretization and Mathematical Modelling.	70
CHAPTER 4.	79
VALIDATION	75
4-1 Introduction.	75
4-2 Experimental Locations.	76
4-2-1 In the vicinity of Transformer (1) faces	76