Screening of Oropharyngeal Dysphagia in Patients with Diabetes Mellitus in El-Demerdash Hospital

Thesis

Submitted for the partial fulfillment of the requirement of Master Degree in Phoniatrics

By

Donia Ayman Zakaria

M.B., B.Ch.

Resident of Phoniatrics, Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Marwa Mahmoud Saleh

Professor of Phoniatrics
Faculty of Medicine - Ain Shams University

Dr. Meram Mohamed Bekhet

Assistant Professor of Endocrinology Faculty of Medicine - Ain Shams University

Dr. Mona Sameeh Khodeir

Lecturer of Phoniatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2017

First, All our thanks are to **Allah** for blessing this work till it has reached its end as a part of his generous help throughout my life.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Marwa Mahmoud Saleh**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University for the great support and encouragement she gave me, and for giving me the honor of working under her supervision.

I would like to express special thanks to **Dr. Meram Mohamed Bekhet**, Assistant Professor of Endocrinology,
Faculty of Medicine, Ain Shams University for her faithful
supervision, precious help and continuous support throughout
this work.

I would like to express my sincere appreciation to **Dr.**Mona Sameeh Khodeir, Lecturer of Phoniatrics, Faculty of Medicine, Ain Shams University for her valuable supervision, generosity and continuous guidance throughout this work.

Finally, I would like to thank my family for their great efforts and support throughout this work and my whole life.

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter 1: Anatomy and Physiology of Swallowing	5
Chapter 2: Dysphagia	32
Chapter 3: Diabetes Mellitus	43
Chapter 4: Dysphagia in other Endocrinopathies	52
Chapter 5: Screening Dysphagia	58
Subjects and Methods	84
Results	90
Discussion	100
Summary	106
Conclusion and Recommendations	109
References	110
Arabic Summary	

List of Abbreviations

ACTH : Adrenocorticotropic hormone

ADH : Anti-diuretic hormone

A-DHI : Arabic version of Dysphagia Handicap

Index

BSA : Bedside Swallowing Assessment

CP : Cricopharyngeus muscle

CVD : Cardiovascular disease

DHI : Dysphagia Handicap Index

DM : Diabetes Mellitus

EAT-10 : Eating Assessment Tool-10 FSH : Follicle-stimulating hormone

GAD : Glutamic Acid Decarboxylase

GH : Growth hormone

HS : Highly significant

IC : Inferior constrictor muscle

LES : Lower esophageal sphincter

LH : Luteinizing hormone

M.D.ADI : M.D. Anderson Dysphagia Inventory

MEN : Multiple endocrine neoplasia

NS : Non-significant

PC : Personal computer

S : Significant

SOAL : Swallowing outcome after total

laryngectomy questionnaire

SSA : Standardized Swallowing Assessment

SSQ : Sydney Swallow Questionnaire

List of Abbreviations (Cont.)

SWAL-QOL: Swallowing related quality of life

TOR-BSST : Toronto Bedside Swallowing Screening Test

TSH : Thyroid-stimulating hormone

UES : Upper esophageal sphincter

VAS : Visual analogue scale

List of Tables

Table	Title	Page
1	Origin, insertion, nerve supply and action of	8
	buccinator and orbicularis oris muscles.	
2	Origin, insertion, nerve supply and action of	11
	the extrinsic muscles of tongue.	
3	Origin, insertion, nerve supply and action of	13
	muscles of mastication.	
4	Origin, insertion, nerve supply and action of	16
	muscles of the soft palate.	
5	Origin, insertion, nerve supply and action of	22
	suprahyoid and infrahyoid muscles.	
6	Endocrine glands, their location and	52
	hormones released from them.	
7	Dysphagia Handicap Index.	71
8	Swallowing outcome after total	83
	laryngectomy questionnaire (SOAL).	
9	Mean age, age range, gender, type of the	90
	diabetes mellitus, mean duration of diabetes	
	mellitus and the diabetes mellitus duration	
	range of the patients participating in this	
	study.	
10	Results of the A-EAT-10 questionnaire (The	92
	mean score of A-EAT-10 questionnaire, standard deviation and the score range	
	(minimum & maximum) given by the study	
	sample patients	
11	The number and the percentage of the	92
	dysphagic and non-dysphagic diabetic	
	patients participating in this study).	

Table	Title	Page
12	Distribution of symptoms among the	93
	diabetic patients complaining from	
	dysphagia according to the A-EAT-10 questionnaire.	
13	Relation between the mean score of the A-	94
	EAT-10 questionnaire and the gender and	
	type of diabetes mellitus of the participating	
	patients (using Mann Whitney test).	
14	Comparison between dysphagic and non-	94
	dysphagic patients as the mean age and	
	gender (using chi-square tests) and mean	
	duration and type of the diabetes mellitus	
	(using student t-test).	
15	Multivariate logistic regression studying the	97
	risk factors for dysphagia among the	
	diabetic patients participated in this study.	
16	Multivariate Linear Regression studying	98
	factors affecting the score of the A-EAT-10	
	questionnaire among diabetic patients	
	participating in this study.	

List of Figures

Fig.	Title	Page
1	Orbicularis oris muscle.	7
2	Buccinator muscle.	8
3	Extrinsic muscles of tongue.	10
4	Muscles of mastication.	12
5	Muscles of soft palate.	15
6	Suprahyoid muscles (Superior and inferior views)	20
7	Infrahyoid muscles	21
8	Eating Assessment Tool (EAT-10).	61
9	Arabic version of the EAT-10 (A-EAT-10).	62
10	The SWAL-QOL and SWAL-CARE	68
	questionnaires	
11	Subscales by self-perceived dysphagia	72
	severity for dysphagia group.	
12	The Arabic version of Dysphagia Handicap	74
	Index (A-DHI).	
13	M.D. Anderson Dysphagia Questionnaire.	78
14	The Sydney Swallow Questionnaire (SSQ).	80
15	The personal and the medical history taken	86
	from the patients.	
16	The Arabic version of Eating Assessment	87
	Tool -10 (A-EAT-10).	
17	Percentage of the participated patients with	91
	diabetes mellitus type 1 and diabetes mellitus	
	type 2.	
18	Percentage of males with/without dysphagia	96
	and females with/without dysphagia.	

Introduction

Dysphagia is the medical term that is used to describe the difficulty of swallowing and the feeling of difficulty in passage of solids or semisolids or liquids from the mouth to the stomach (*Smithard et al.*, 2007 and Brady, 2008).

Justice (2006) stated that dysphagia is not a disease, but rather a symptom that results from an underlying etiology or cause. Dysphagia is classified in the clinical settings according to the extent of oral, pharyngeal or esophageal phase deficits into Oropharyngeal dysphagia and Esophageal dysphagia.

Oropharyngeal dysphagia describes the difficulty to start a swallow in one of the 3 phases; the oral preparatory, oral voluntary and the pharyngeal phases. This may cause food to enter the larynx and lead to choking, coughing, or even aspiration pneumonia. This is typically felt in the region of the back of the throat (Gyawali, 2010). Esophageal dysphagia describes the feeling of food being stuck in neck or chest and this occurs with diseases that involve the esophagus (Gyawali, 2010).

Oropharyngeal dysphagia can result from different types of damage to the central nervous system (damage may be due to injury of the cortex, spinal cord or due to degenerative neurological disorders) or damage to the structures of the oral cavity, pharynx and larynx. Also, treatment of head and neck cancer by using either radiation

or surgery often results in significant changes in the swallowing mechanism (Falk and Katzka, 2016; Kahrilas and Pandolfino, 2016).

Wise and Murray (2006) stated that there are systemic diseases that may cause dysphagia such as:

- Connective tissue diseases such as scleroderma and systemic lupus erythematosus.
- Infectious diseases such as Chagas' disease.
- Inflammatory diseases such as sarcoidosis.
- Endocrinal diseases such as diabetes mellitus.

Few tools have been developed to assess the patient's perception of his/her dysphagia-related problems in terms of quality of life, emotional and psychosocial effects. Some of these questionnaires are:

- Eating Assessment Tool (EAT-10) is a tool used to measure the swallowing problems. It is also validated in the Arabic language by *Farahat and Mosallem* (2015) and called the validated Arabic version of Eating Assessment Tool (EAT-10) for Arab speaking patients with oropharyngeal dysphagia (*Farahat and Mosallem*, 2015).
- The swallowing related quality of life (SWAL-QOL) was developed by *McHorney et al.* (2000) as a patient-based dysphagia-specific tool to evaluate the impact of swallowing problems on the quality of life in patients with dysphagia.

- M.D. Anderson Dysphagia Inventory (MDADI) is the first validated questionnaire that is designed specifically to assess the effect of dysphagia on quality of life of patients with head/neck cancer (*Chen et al.*, 2001).
- **Dysphagia Handicap Index (DHI)** is a validated and standardized English questionnaire that describes the handicapping effect of dysphagia on emotional, functional, and physical aspects of individual's lives (*Farahat et al.*, 2014).

Diabetes mellitus is a systemic endocrinal disease that results either from deficiency of insulin hormone (type 1) or from insulin resistance or both (type 2) (Dattani and Gevers, **2016**). The pathophysiology of the oropharyngeal dysphagia in diabetics is still not completely clear. However, the neuropathy associated with autonomic long term hyperglycemia is claimed to be the cause. Restivo et al. (2006) reported that dysphagia in diabetic patients is due to hyperactivity of the cricopharyngeus muscle of the upper esophageal sphincter as the coordination between the pharyngeal inferior constrictor and cricopharyngeus muscle is impaired.

Questions arise about oropharyngeal dysphagia in diabetes; its prevalence, whether it is related more to diabetes type 1 or type 2, or duration of diabetes. Literature is scarce related to dysphagia with diabetes. This complaint is expressed by some patients and needs to be explored.

Aim of the Work

The aim of this work is to screen Egyptian diabetic patients (type 1 and type 2) in El-Demerdash hospital for oropharyngeal dysphagia.

Anatomy and Physiology of Swallowing

Swallowing process is the successful passage of food and drinks from the mouth to the stomach. It is a continuous process of deglutition from placement of the food in the mouth, its manipulation in the oral cavity, and its passage through the oral cavity, pharynx, and esophagus until it enters the stomach. It is a complex process involving the muscular and neurological systems (Matsuo and Palmer, 2008; Shaker et al., 2013).

Anatomical structures involved in the swallowing process:

- 1. The oral cavity: including the outer vestibule (lips and oral vestibule) and the inner oral cavity proper (teeth, tongue, cheeks, hard palate and soft palate).
- 2. The pharynx.
- 3. The larynx.
- 4. The esophagus.

1. The oral cavity:

The oral cavity is the initial site for the food processing. It extends from the lips to the pharynx. The oral cavity is divided by the dental arches (formed by the teeth and alveoli) into two parts: the outer vestibule (lips and oral vestibule) and the inner oral cavity proper (teeth, tongue, cheeks, hard palate and soft palate) together with the jaw and the tempromandibular joint.

Structures inside the oral cavity are:

The oral vestibule:

The oral vestibule is the part of the oral cavity lying between the dental arches and the deep surfaces of the cheeks and lips. It is lined by mucous membrane. The parotid duct and the labial, buccal, and molar glands open into the oral vestibule. Anteriorly, it communicates exteriorly via the oral fissure and posteriorly with the oral cavity proper (*Matsuo and Palmer*, 2008; Shaker et al., 2013).

Lips:

The lips surround the oral fissure and are composed of the orbicularis oris muscle (*figure*, 1) and sub mucosa (containing mucous labial glands, labial vessels, nerves and fatty tissues). They are lined externally by skin and internally by mucous membrane. Lips ensure good lip closure; preventing oral contents from leaking out of the mouth by the action of the orbicularis oris muscle during the oral preparatory phase (*Gray*, 2008; *Drake et al.*, 2009). Orbicularis oris muscle is a complex of muscles in the lips that encircles the mouth. It was misinterpreted as a circular muscle, but it is now recognized that the muscle actually consists of four substantially independent quadrants that interlace and give only an appearance of circularity (upper, lower, left and right) (*Standring*, 2008).

Figure (1): Orbicularis oris muscle (arrow) (*Standring*, 2008)

Cheeks:

The cheeks form the lateral walls of the oral cavity and are continuous with the lips at the nasolabial sulcus. Each cheek is composed of skin, superficial fascia, parotid duct, mucous buccal and molar glands, vessels, nerves, lymphatics, fat, submucosa, and mucosa. Cheeks provide counter force to the tongue to facilitate proper bolus control and prevent accumulation of food in the lateral sulci by the action of buccinator muscle during the oral preparatory phase (Gray, 2008; Drake et al., 2009). The buccinator (figure, 2) is a thin quadrilateral muscle, occupying the interval between the maxilla and the mandible at the side of the face. It forms the anterior part of the cheek or the lateral wall of the oral cavity (Standring, 2008).