

Different Methods of Implant Fixation in Primary Knee Arthroplasty

Essay

Submitted for partial fulfillment of Master Degree in **Orthopedic Surgery**

By Karim Mostafa El MelegyM.B.B.Ch.

Supervised by

Assist Prof. Wael Ahmed Nassar

Assistant Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

Dr. Saleh Gameel Mansour

Lecturer of Orthopaedic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University **2017**

بنين التال المخوال المخيري

وقُل اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلُكُمْ وَلَيْ وَالْمُؤْمِنُونَ وَرَسُولُهُ وَالْمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (١٠٥)

Tirst, thanks are all due to Allah, for Blessing this work until it has reached its end, as a part of his generous help throughout our life. It is with the deepest gratitude that I wish to express my appreciation for the persistent and unfailing efforts and sincere and inestimable guidance of Dr. Wael Ahmed Nassar, Assistant Professor of Orthopaedic Surgery, Ain Shams University. He has been kind enough to spare no effort and no time to orient, to advise, to supervise, to teach and to give willing and lavishly from his inexhaustible treasure of knowledge.

I can also deeply conscious of the help and support continually and most generously offered by Dr. Saleh Gameel Mansour, Lecturer of orthopedic surgery, Ain Shams University. He is always inclined to give teaching, encouraging and inspiring his valuable directions to complete my research until it came to light.

🖎 Karim Mostafa El Melegy

List of Contents

Subject		
List of Abbreviations	i	
List of Figures	ii	
Introduction	1	
Aim of the Work	5	
Anatomy of the Knee	6	
Structure	7	
Muscles	9	
Blood supply	11	
Knee Biomechanics	13	
Intronduction to biomechanics	13	
Tibiofemoral biomechanics	14	
Joint reaction force	19	
Patellofemoral biomechanics	20	
Different Methods of Implant Fixation in Arthroplasty	-	
Cemented Total Knee Arthroplasty	23	
Definition	23	
Biomechanical/biologic basis	23	
Optimizing the technique	24	
Implant design	26	
Bone preparation	28	
Clinical result	31	

Cementeless Total Knee Arthroplasty	33
Definition	33
Cementless implant design	33
Biologic considerations	33
Geometry of interface	34
Surgical approach	38
Bone preparation	38
Clinical result	39
Hybrid Total Knee Arthroplasty	42
Introduction	42
Indication for hybrid/cemetless fixation of the femoral component	42
Clinical result	43
Complications of Knee Arthroplasty	46
Different Fixation Technique Evidence-based	56
Summary and Conclusion	64
References	66
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

BMI : Body mass index

DVT : Deep vein thrombosis

HA : Hydroxyapatite

MGI : The Miller-Galante I

Mpa : Megapascals

PMMA : Polymethyl methacrylate

RCT : Randomized controlled trial

RSA : Radiostereometry analyses

TKR : Total knee replacement

UHMWP: Ultrahigh molecular weight polyethylene

UKA : Unicompartmental knee arthroplasty

WOMAC: Western Ontario and McMaster Universities Arthritis

List of Figures

Figure '	No. Eitle	Page No.
Fig. (1):	Articular surface of the femur	7
Fig. (2):	Articular surface of the knee	7
Fig. (3):	Lateral and posterior surface of the knee	10
Fig. (4):	Posterior surface of the knee	10
Fig. (5):	Blood supply of the knee	12
Fig. (6):	Patella increase lever arm of quadriceps	13
Fig. (7):	Movement of the knee in six axies	15
Fig. (8):	The four-bar link mechanism produced by cruciate ligaments.	
Fig. (9):	Anatomical and mechanical axis of the lov	ver17
Fig. (10):	Reference axis used for rotational align the femoral components while performing knee replacement.	g a total
Fig. (11):	The patellofemoral joint is subjected compressive force that is the resultant surforce of the vectors of the patellar tendon quadriceps tendon forces	mmative and the
Fig. (12):	Q angle of the patella	22
Fig. (13):	The packet of powder contains partition PMMA and The liquid vial methylmethacrylate monomer	contains
Fig. (14):	Intraoperative picture demonstrating the technique.	
Fig. (15):	Top view of the tibial component	27
Fig. (16):	Anteroposterior view of cemented TKR	28

List of Figures

Fig.	(17):	Image show intraoperative bone preparation	29
Fig.	(18):	Tibial and femoral component of cementless TKR.	35
Fig.	(19):	Wound healing problem	46
Fig.	(20):	Superfecial infection of the knee.	47
Fig.	(21):	Osteomyelitis of the tibia and the femur	48
Fig.	(22):	Complication of TKR.advanced polyethylene wear.	50
Fig.	(23):	Unicompartmental replacement procedure, it is vitally important to preserve the medial tibial plateau for later revision implantation	52
Fig.	(24):	Poor soft-tissue balancing. Inadequate spacer insertion, poor ligament balancing, excessive bone resection.	53
Fig.	(25):	Multiple faults that led to excessive wear and osteolysis around the stem.	54

Abstract

Purpose: Discuss and compare the recent advances of different methods of implant fixation of knee arthroplasty

Methods: Comprehensive literature review was performed using cemented, cementless and hybrid TKR regardless the year of publication.

Results: Cemented TKR has the upper hand over the other methods in outcome, low rate of complication, stability and cost.

Conclusion: Newest generation of cementless TKR treat the complication of oldest generation.

Keyword: outcome, complication, stability and cost.

Introduction

Total knee arthroplasty performed worldwide uses either cemented, cementless, or hybrid (cementless femur with a cemented tibia) fixation of the components. Noncemented components offer the potential advantage of a biologic interface between the bone and implants, which could demonstrate the greatest advantage in long-term durable fixation in the follow-up of young patients undergoing arthroplasty.¹

There was a significant gender difference between cemented and cementless TKR (total knee replacement), with males having a higher failure rate with cemented fixation. Females had a similar failure rate with cemented and cemetless fixation.²

Cementless fixation provides improved fixation at five years compared with cemented fixation in mobile-bearing unicompartmental knee replacements, maintaining equivalent or superior clinical outcomes with a shorter operative time and no increase in complications.³

radiographic analysis using antero-posterior X-rays revealed significantly more and larger periprosthetic loosening areas in tibial zone 2 in the patient undergo cementless TKR.⁴

Oxford Knee and American Knee Society scores were comparable in the cemented versus cementless cohorts. Statistical analysis revealed no significant difference in peri-prosthetic bone mineral density.⁵

Aseptic loosening of cemented knee arthroplasties has encouraged development of uncemented fixation. The Miller-Galante I (MG I) prosthesis was designed to achieve permanent stability through ingrowth into a titanium fiber mesh. Patellofemoral problems, especially avulsion of the polyethylene from the metal-backed patella occur occasionally. Severe metallosis is the main reason for revision. Metal-backed patellar component should be avoided.⁶

A significantly higher revision rate was found in the uncemented compared with cemented total knee arthroplasty of the Press Fit Condylar design due to aseptic loosening and osteolysis.⁷

Cementless femoral fixation was excellent in its initial results, however, metal-backed patellar components had a 48% patellar revision rate. Cementless tibial components had an 8% aseptic loosening rate and a 12% incidence of small osteolytic lesions. Based on these results, many authors have abandoned cementless fixation in total knee arthroplasty.⁸

Addition of cement surrounding the tibial stem decreases micromotion of the tibial tray in cemented total knee arthroplasty. However, if the cement mantle beneath the tibial baseplate was increased to 3 mm, excellent stability of the implant was seen regardless of whether the tibial stem was left uncemented. In this particular component design, implant stability was enhanced with the addition of cement surrounding the tibial stem unless the cement mantle beneath the tibial tray was increased to 3 mm.⁹

There was no difference in cumulative revision rate based on diagnosis (OA versus other) or age group or between cruciate-retaining and substituting designs. Eighty five percent of cemented TKA implants survived at 14 years in the population under 55 years of age. Cementless designs and UKA increased revision risk independently.¹⁰

Although cemented tibial fixation of total knee arthroplasty accepted as the gold standard, cementless fixation as a means to avoid many of the disadvantages of cemented fixation, which continues to be of interest to clinicians. No osteolysis was identified in either group. The rate of survival of the femoral and tibial components

was 100% in both groups at final follow up in study mulhall et al.¹²

In the study by Cosetto D.J et al there were no significant differences in the clinical and radiological outcomes between the cemented and cementless over a minimum of 8-year postoperative period. This study has shown that both tibial fixation methods in mobile-bearing TKA resulted in good clinical and radiological outcomes during their follow-up period, and no patient underwent revision of the any component of TKA.¹¹

In patients under the age of 60 years using the NexGen cruciate retaining TKA, there were no significant differences in outcome both clinically or radiologically or on radiostereometric analysis when comparing a cemented with an uncemented femoral component. The RSA (Radiostereometry analyses) findings suggest that an uncemented and non-hydroxyapatite (HA)-coated femoral component may behave equally as well as a cemented one in the long term.¹²

Aim of the Work

The aim of this work to discuss and compare the Recent advances of different methods of implant fixation of knee arthroplasty.

Anatomy of the Knee

- Structure
 - o 1.1 Articular bodies
 - o 1.2 Articular capsule
- Muscles
 - o 2.1 Extensors
 - o 2.2 Flexors
- Blood supply