# Biological Synthesis of Silver and Gold and Their Bimetallic Nanoparticles: Application in Antimicrobial Activity and Cytotoxicity

## Presented by

#### **HUDA MAHDI YOUNUS**

#### **A Thesis Submitted**

To

Faculty of Science
In Partial Fulfillment of the Requirements for
The Degree of Doctor of Philosophy of Science
(Inorganic Chemistry)
Chemistry Department

Faculty of Science
Ain Shams University
2017

### Biological Synthesis of Silver and Gold and Their Bimetallic Nanoparticles: Application in Antimicrobial Activity

### and Cytotoxicity

A thesis submitted by

### **HUDA MAHDI YOUNUS**

For Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy of Science (Inorganic Chemistry)

| <b>Under supervision of</b>                                                                                               | <u>signature</u> |
|---------------------------------------------------------------------------------------------------------------------------|------------------|
| Prof. Dr. Mostafa Mohamed Hassan Khalil<br>Professor of Inorganic Chemistry<br>Faculty of Science<br>Ain Shams University |                  |
| <b>Dr. Dina Yehia Sabry</b> Assistant Professor of Inorganic Chemistry Faculty of Science Ain Shams University            |                  |

Prof. Dr. Ibrahim H.A. Badr

Head of Chemistry Department Faculty of Science – Ain Shams University

### Biological Synthesis of Silver and Gold and Their Bimetallic Nanoparticles: Application in Antimicrobial Activity and Cytotoxicity

A thesis submitted by

#### **HUDA MAHDI YOUNUS**

For Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy of Science (Inorganic Chemistry)

| Th | esis Supervisors:                                                                                                   | <u>signature</u> |
|----|---------------------------------------------------------------------------------------------------------------------|------------------|
| 1. | Prof. Dr. Mostafa Ibrahim Mostafa Professor of Inorganic Chemistry Faculty of Science Banha University              |                  |
| 2. | Prof. Dr. Abdel Ghani Farag El Saied Shoier Professor of Inorganic Chemistry Faculty of Science Damietta University |                  |
| 3. | Prof. Dr. Mostafa Mohamed Hassan Khalil Professor of Inorganic Chemistry Faculty of Science Ain Shams University    |                  |
| 4. | <b>Dr. Dina Yehia Sabry</b> Assistant Professor of Inorganic Chemistry Faculty of Science Ain Shams University      |                  |

Prof. Dr. Ibrahim H.A. Badr

Head of Chemistry Department Faculty of Science – Ain Shams University



سورة البقرة الأية: ٣٢



First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

Words are not enough to describe my deep thanks to **Prof. Dr. Mostafa M. H. Khalil,** Professor of inorganic chemistry, Faculty of Science, Ain Shams University, for suggesting the program of this work, his guidance and supervision in the course of the work, and for his stimulating criticisms and help in the preparation of the thesis.

I would like to express my deep thanks and gratitude to **Dr Dina Yehia Sabry**, Associate Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for her invaluable help and support throughout the course of this work.

Also, I offer my thanks and appreciations to all of those who supported me in any respect in the Chemistry Department during the completion of this thesis.

Last but not Least, my thanks are due to my family, especially my husband, for support and encouragement which gave me the strength to finish this work.

> Huda Mahdi Younis

# **List of Contents**

| ACKNOWLEDGMENTS                             |
|---------------------------------------------|
| CONTENTS                                    |
| LIST OF ABBREVIATIONS                       |
| LIST OF TABLESi                             |
| LIST OF FIGURESii                           |
| ABSTRACTx                                   |
| SUMMARYx                                    |
| CHAPTER I. INTRODUCTION AND REVIEW          |
| OF LITERATURE                               |
| 1.1 Definition of Nanotechnology            |
| 1.2 A brief history of nanoparticles        |
| 1.3 Properties of nanoparticles             |
| 1.4 Basic features of nanoparticles         |
| 1.4.1 Nanoparticles and surface effects     |
| 1.4.2 Size effects                          |
| 1.5 Metallic nanoparticles                  |
| 1.6 Stabilization of metal nanoparticles 11 |
| 1.7 Silver nanoparticles                    |
| 1.8 Gold nanoparticles                      |
| 1.9 Physical properties of nano materials   |
| 1.10 Bimetallic nanoparticles               |
| 1.11 Silver-gold bimetallic nanoparticles   |
| 1.12 General synthetic routes of metallic   |
| nanoparticles                               |
| 1.13 Methods for synthesize of              |
| metallicNanoparticles29                     |
| 1.13.1 Physical methods                     |
| 1.13.2 Chemical methods                     |

| Contents |
|----------|

| 1.13.3 Biological methods                                                                                                                                                                                                                                                                                                                                                                                                 | 33                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1.13.3.1 Nanoparticle Synthesis by Plants                                                                                                                                                                                                                                                                                                                                                                                 | 34                                           |
| 1.13.3.1.1 Synthesis of silver nanoparticles using plant extracts.                                                                                                                                                                                                                                                                                                                                                        | 42                                           |
| 1.13.3.1.2 Synthesis of gold nanoparticles using plant extracts.                                                                                                                                                                                                                                                                                                                                                          | 47                                           |
| <ul><li>1.13.3.1. 3 Synthesis of Sliver-gold bimetallic nanoparticles using plant extracts.</li><li>1.14 Mechanisms of Biosynthesis of Nanoparticles</li></ul>                                                                                                                                                                                                                                                            | 53                                           |
| using plant extracts                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| 1.16 Antioxidant compounds in Teak (Tectona grandis)leaves                                                                                                                                                                                                                                                                                                                                                                | 62                                           |
| AIM OF THE WORK                                                                                                                                                                                                                                                                                                                                                                                                           | <b>(0</b>                                    |
| AIM OF THE WORK                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                           |
| CHAPTER II: MATERIALS AND METHODS 2.1 Material                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| CHAPTER II: MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                                                                                         | 69                                           |
| CHAPTER II: MATERIALS AND METHODS 2.1 Material                                                                                                                                                                                                                                                                                                                                                                            | 69<br>69                                     |
| CHAPTER II: MATERIALS AND METHODS 2.1 Material 2.2 Analytical instruments                                                                                                                                                                                                                                                                                                                                                 | 69<br>69<br>70                               |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material  2.2 Analytical instruments  2.2.1 UV–visible spectral analysis  2.2.2 Transmission electron microscopy (TEM)                                                                                                                                                                                                                                                             | 69<br>69<br>70<br>70                         |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material  2.2 Analytical instruments  2.2.1 UV–visible spectral analysis  2.2.2 Transmission electron microscopy (TEM)  2.2.3 X-Ray Diffraction  2.2.4 Fourier transform infrared spectroscopy  2.2.5 Thermogravimetric analysis                                                                                                                                                   | 69<br>69<br>70<br>70<br>71                   |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material  2.2 Analytical instruments  2.2.1 UV-visible spectral analysis  2.2.2 Transmission electron microscopy (TEM)  2.2.3 X-Ray Diffraction  2.2.4 Fourier transform infrared spectroscopy  2.2.5 Thermogravimetric analysis  2.2.6 Dynamic Light Scattering (DLS)                                                                                                             | 69<br>69<br>70<br>71<br>72                   |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material  2.2 Analytical instruments  2.2.1 UV-visible spectral analysis  2.2.2 Transmission electron microscopy (TEM)  2.2.3 X-Ray Diffraction  2.2.4 Fourier transform infrared spectroscopy  2.2.5 Thermogravimetric analysis  2.2.6 Dynamic Light Scattering (DLS)  2.3 Preparation of the extract                                                                             | 69<br>69<br>70<br>70<br>71<br>72<br>72       |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material                                                                                                                                                                                                                                                                                                                                                                           | 69<br>69<br>70<br>71<br>72<br>72<br>73       |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material  2.2 Analytical instruments  2.2.1 UV-visible spectral analysis  2.2.2 Transmission electron microscopy (TEM)  2.2.3 X-Ray Diffraction  2.2.4 Fourier transform infrared spectroscopy  2.2.5 Thermogravimetric analysis  2.2.6 Dynamic Light Scattering (DLS)  2.3 Preparation of the extract  2.4 Synthesis of gold nanoparticles  2.5 Synthesis of silver nanoparticles | 69<br>69<br>70<br>71<br>72<br>73<br>73       |
| CHAPTER II: MATERIALS AND METHODS  2.1 Material                                                                                                                                                                                                                                                                                                                                                                           | 69<br>69<br>70<br>71<br>72<br>73<br>73<br>73 |

|  | Contents |
|--|----------|
|--|----------|

| 2.8 Preparation of silver, gold and their bimetallic | 7.5 |
|------------------------------------------------------|-----|
| nanoparticles for antimicrobial assay                | 75  |
| 2.8.1 Preparation of Nps using Gmelina leaves        |     |
| extract                                              |     |
| 2.8.2 Preparation of Nps using Teak extract          | 76  |
| 2.9 Antimicrobial activity assay                     | 77  |
| CHAPTER III: GREEN SYNTHESIS OF                      |     |
| SILVER, GOLD AND CORE-SHELL                          |     |
| SILVER-GOLD NANOPARTICLES                            |     |
| USINGGMELINA LEAF EXTRACT                            |     |
| Introduction                                         | 78  |
| 3.1 UV-visible spectroscopy and TEM Studies          |     |
| 3.1.1 Effect of concentration of Gmelina leaves      |     |
| extract                                              | 79  |
| 3.1.2 Effect of contact time                         |     |
| 3.1.3. Effect of pH                                  |     |
| 3.1.4 Effect of temperature                          |     |
| 3.2. X-Ray diffraction study                         |     |
| 3.3 Fourier transform infra-red spectroscopy (FTIR)  |     |
| 3.4 Thermal gravimetric analysis (TGA)               |     |
| 3.5 Dynamic light scattering (DLS)                   |     |
| 3.6 The proposed mechanism of synthesis              |     |
| 3.7 Cytotoxicity Activity                            |     |
| 3.8 Antimicrobial assay                              |     |
| CHAPTER IV: GREEN SYNTHESIS OF SILVER,               |     |
| GOLD AND SILVER-GOLD NANOPARTICLE                    | ES  |
| USINGTEAK LEAF EXTRACT                               |     |
| Introduction                                         | 116 |
| 4.1 UV-visible spectroscopy and TEM Studies          | 117 |
| 4.1.1 Effect of concentration of Teak leaves extract |     |
| 4.1.2 Effect of contact time                         |     |
| TILE LITEOU OF COHURCE HIMC                          | 123 |

## Oontents

| ARABIC SUMMARY                                      |     |
|-----------------------------------------------------|-----|
| REFERENCES                                          | 156 |
| 4.7 Antimicrobial assay                             | 152 |
| 4.6 Cytotoxicity Activity                           | 148 |
| 4.5 Dynamic light scattering (DLS)                  | 144 |
| 4.4 Thermal gravimetric analysis (TGA)              | 142 |
| 4.3 Fourier transform infra-red spectroscopy (FTIR) | 140 |
| 4.2 X-Ray diffraction study                         | 138 |
| 4.1.4 Effect of temperature                         | 135 |
| 4.1.3. Effect of pH                                 | 130 |
|                                                     |     |

## **List of Abbreviations**

Abbr. Full-term

**AgAuNPs** : Silver-Gold bi-metallic nanoparticles

**AgNPs** : Silver nanoparticles

**AuNPs** : Gold nanoparticles

**DLS**: Dynamic Light Scattering

**FTIR** : Fourier transform infra-red spectroscopy

**FT-IR** : Fourier Transform Infrared

**FWHM** : Full width at half maximum

**FWHM** : Full width at half maximum

**HePG2** : Hepatocellular carcinoma

**ROXB** : Gmelina arborea

**SPR** : Surface plasmon resonance

**TEAK** : Tectona grandis

**TEM** : Transmission electron microscopy

**TGA** : Thermo gravimetric analysis

# **List of Tables**

| Eable No.           | Citle                                                                                                        | Page No.       |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------|
| <b>Table (1.1):</b> | Several physical and chemical me have been used for synthesizing stabilizing silver NPs                      | and            |
| <b>Table (1.2):</b> | Some advantages and disadvantag silver and gold nanoparticles                                                |                |
| <b>Table (1.3):</b> | Synthesis of gold nanoparticles by extracts                                                                  | •              |
| <b>Table (1.4):</b> | Major compounds identified in essential oil of Gmelina leaf                                                  |                |
| Table (1.5):        | Result of phytochemical screening Teak plants                                                                |                |
| <b>Table (1.6):</b> | Details of secondary metal constituents of T. grandis.                                                       |                |
| <b>Table (3.1):</b> | Cytotoxicity (IC50) of aqueous exof Gmelina and the nanoparticles                                            |                |
| Table (3.2):        | Antimicrobial activities of difference concentrations of Gmelina leaf earned AuNPs, AgNPs, and AuA solutions | xtract<br>gNPs |
| <b>Table (4.1):</b> | Cytotoxicity (IC50) of aqueous exof Teak and the nanoparticles                                               |                |
| Table (4.2):        | Antimicrobial activities of difference concentrations of Teak leaf extract AuNPs, AgNPs, and AuA solutions   | t and<br>gNPs  |

# **List of Figures**

| Figure No.           | Citle                                                                                                                                                                                                                          | Page No.                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Figure (1.1):        | Some nanometer objects in living sys                                                                                                                                                                                           | stem2                                                   |
| Figure (1.2):        | (a) Photograph of a medieval pied glazed ceramic observed by scattered and specular reflection. (b) TEM in the double layer of silver nanopartic Schematic representation of interphenomena due to the double layer            | ed light mage of cles. (c) rference                     |
| Figure (1.3):        | The Lycurgus Cup in reflected (left) transmitted (right) light. Trustees British Museum.                                                                                                                                       | of the                                                  |
| <b>Figure (1.4):</b> | Classification of metallic nanomateri                                                                                                                                                                                          | als 10                                                  |
| Figure (1.5):        | (a) Electrostatic stabilization nanostructured metal colloids, (b) stabilization of nanostructured colloids.                                                                                                                   | Steric<br>metal                                         |
| Figure (1.6):        | Nanoparticles in comparison with biological entities.                                                                                                                                                                          |                                                         |
| <b>Figure (1.7):</b> | Various shapes of gold nanoparticles                                                                                                                                                                                           | 19                                                      |
| Figure (1.8):        | Cross section schematic representations some possible patterns for different arrangements of bimetallic nanopactore-shell (a); sub-cluster segundary or simple phase separated (b); order andom mixed (c); three-shell on (d). | element<br>articles:<br>gregated<br>red and<br>ion-like |
| Figure (1.9):        | Recent applications for Au an nanomaterials.                                                                                                                                                                                   |                                                         |

| Figure (1.10): | Schematic diagram of gold nanoparticle growth                                                                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure (1.11): | Formation of nanostructured metal colloids via the Fenki mechanism                                                                                                                                                                                                          |
| Figure (1.12): | Schematic representation of Bottom–up and Top–down technique                                                                                                                                                                                                                |
| Figure (1.13): | Various approaches for making nanoparticles and cofactor dependent bioreduction                                                                                                                                                                                             |
| Figure (1.14): | Schematic illustration of preparative methods of metal nanoparticles                                                                                                                                                                                                        |
| Figure (1.15): | Schematic representation of a proposed mechanism of plant-mediated synthesis of metal nanoparticles                                                                                                                                                                         |
| Figure (1.16): | Various types of plants used for the synthesis of metal nanoparticles                                                                                                                                                                                                       |
| Figure (1.17): | Reducing and stabilizing agents in plant phytochemicals that used for the synthesis of metal nanoparticles                                                                                                                                                                  |
| Figure (1.18): | Gmelina leaves                                                                                                                                                                                                                                                              |
| Figure (1.19): | Teak Leaves                                                                                                                                                                                                                                                                 |
| Figure (1.20): | Phenolic compounds (1-4) and lignans (8-12) of T. grandis Linn                                                                                                                                                                                                              |
| Figure (1.21): | The isolation of four phenolic compounds named TG1, TG2, TG3 and TG467                                                                                                                                                                                                      |
| Figure (3.1):  | (a) The color change of gold solution formed using different concentrations of plant extract, (b) Uv-vis spectra of gold nanoparticles using constant HAuCl <sub>4</sub> concentration 2.9x 10 <sup>-4</sup> M with different concentrations of extract from 0.2 to 3 ml 81 |

| Figure (3.2):        | (a) The color change of silver solution formed using different concentrations of Gmelina extract, (b)UV-vis spectra of silver nanoparticles using constant AgNO <sub>3</sub> concentration (1x10 <sup>-4</sup> M) with different concentrations of extract from 0.2 to 1.5 ml 83 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure (3.3):        | UV-visible spectra of AgAu bimetallic nanoparticles using 2.5 ml of plant extract (4%) and (0.5 ml) of silver nitrate (1 x 10 <sup>-2</sup> M) and after 24hrs (0.05) ml of HAuCl <sub>4</sub> (2.9x 10 <sup>-4</sup> M) was added at room temperature                           |
| Figure (3.4):        | TEM images of (a) AuNPs; (b) AgNPs and (c) AgAuNPs nanoparticles                                                                                                                                                                                                                 |
| Figure (3.5):        | UV-visible spectra of Au nanoparticles formed as a function of contact time ( $Au^{3+} = 2.9 \times 10^{-4} M$ , ml extract)                                                                                                                                                     |
| Figure (3.6):        | UV-visible spectra of Ag NPs formed as a function of time ( $[Ag^+] = 5x10^{-4}$ M, extract = 2.5 mL (4%)                                                                                                                                                                        |
| Figure (3.7): 1      | JV-visible spectra of Ag(Au) core-shell NPs formed as a function of time. 2.5 ml of plant extract (4%) and (0.5 ml) of silver nitrate (1 x 10 <sup>-2</sup> M) and after 24hrs (0.05) ml of HAuCl <sub>4</sub> (2.9x 10 <sup>-4</sup> M) was added at room temperature 89        |
| <b>Figure (3.8):</b> | Effect of Gmelina extract solution pH on the formation of AuNPs                                                                                                                                                                                                                  |
| Figure (3.9):        | Effect of Gmelina extract solution pH on the formation of AgNPs                                                                                                                                                                                                                  |
| Figure (3.10):       | Effect of Gmelina extract solution pH on the formation of Au (Au) core-shell NPs                                                                                                                                                                                                 |
| Figure (3.11):       | TEM images of <b>(a)</b> AuNPs at pH 4.5 <b>(b)</b> AuNPs at pH 9                                                                                                                                                                                                                |

| Figure (3.12): | TEM images of <b>(a)</b> AgNPs at pH 4.5 <b>(b)</b> AgNPs at pH 994                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| Figure (3.13): | TEM images of (a)AuAgNPs at pH 4.2 (b)AuAg NPs at pH 9                                                                       |
| Figure (3.14): | UV-vis spectra of AuNPs as a function of temperature                                                                         |
| Figure (3.15): | UV-vis spectra of AgNPs as a function of temperature                                                                         |
| Figure (3.16): | UV-vis spectra of AuAgNPsas a function of temperature                                                                        |
| Figure (3.17): | X-Ray diffraction patterns of (a) AuNPs and (b) AgNPs (c)AuAgNPs prepared with aqueous <i>Gmelina</i> leaf extract           |
| Figure (3.18): | FTIR spectra of (a) <i>Gmelina</i> leaf extract(b) gold nanoparticles (c) sliver nanoparticles (d) gold-silver nanoparticles |
| Figure (3.19): | TGA of (a) capped AuNPs (b) capped AgNPs, (c) AuAgNP using Gmelina leaf extract                                              |
| Figure (3.20): | The intensity and number distribution of AuNPs versus particle diameter in nm. The different of the same sample              |
| Figure (3.21): | The intensity and number distribution of AuNPs versus particle diameter in nm. The different of the same sample              |
| Figure (3.22): | The intensity and number distribution of AuNPs versus particle diameter in nm. The different of the same sample              |
| Figure (3.23): | Proposed mechanism for formation of bimetallic AuAg core-shell nanoparticles 107                                             |