

Application of Radiation Technology in Development of Some Polymeric Materials for Industrial Purposes

Thesis Submitted to Faculty of Science - Ain Shams University

In Partial Fulfillment of the Requirements of the Ph.D.

Degree in Chemistry

By Ahmed Eid El-Sayed Swilem (M.Sc. 2012)

Under supervision of:

Prof. Dr. Ashraf A. M. Hamed

Prof. of Organic Chemistry
Faculty of Science – Ain Shams University

Prof. Dr. El-Sayed A. Hegazy

Prof. of Radiation Chemistry
National Center for Radiation Research
and Technology - Atomic Energy Authority

Prof. Dr. Hassan A. Abd El-Rehim

Prof. of Radiation Chemistry
National Center for Radiation Research
and Technology - Atomic Energy Authority

Chemistry Department Faculty of Science Ain Shams University 2017

Faculty of Science

Application of Radiation Technology in Development of Some Polymeric Materials for Industrial Purposes

Thesis Submitted to Faculty of Science - Ain Shams University

In Partial Fulfillment of the Requirements of the Ph.D. Degree in Chemistry

By

Ahmed Eid El-Sayed Swilem

THESIS SUPERVISORS	<u>APPROVED</u>
Prof. Dr. Ashraf A. M. Hamed	•••••
Faculty of Science, Ain Shams University.	
Prof. Dr. El-Sayed A. Hegazy National Center for Radiation Research and Egyptian Atomic Energy Authority.	Technology,
Prof. Dr. Hassan A. Abd El-Rehim National Center for Radiation Research and Egyptian Atomic Energy Authority.	

Head of Chemistry Department

Prof. Dr. Ibrahim H. Badr

Faculty of Science

REFEREE COMMITTEE

Application of Radiation Technology in Development of Some Polymeric Materials for Industrial Purposes

Thesis Submitted to Faculty of Science - Ain Shams University

In Partial Fulfillment of the Requirements of the Ph.D. Degree in Chemistry

By

Ahmed Eid El-Sayed Swilem

Prof. Dr. Ashraf A. M. Hamed Professor of Organic Chemistry, Faculty of Science, Ain Shams University. Prof. Dr. El-Sayed A. Hegazy Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority. Prof. Dr. / Mahmoud A. Abd El-Ghaffar Professor of Polymer Chemistry, National Research Center. Prof. Dr. / Hosam A. Shawky Professor of Water Chemistry, Desert Research Center.

Head of Chemistry Department

APPROVED

Prof. Dr. Ibrahim H. Badr

Acknowledgements

I would like to express my deep gratitude and thanks to **Prof. Dr. Ashraf Ahmed Mohamed Hamed** (Chemistry Department, Faculty of Science, Ain Shams University) and to **Prof. Dr. El-Sayed Ahmed Hegazy** and **Prof. Dr. Hassan Ahmed Abd El-Rehim** (Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority) for their supervision, suggestions and helpful discussion.

I would like to thank **Dr. Marian Lehocký** (Center of Polymer Systems, Tomas Bata University in Zlín, Czech Republic) for his supervision and kind help during my scholarship in Czech Republic. I am also grateful to **Dr. Petr Humpolíček** and **Dr. Zdenka Kuceková** (Center of Polymer Systems, Tomas Bata University in Zlín, Czech Republic) for carrying out the cell proliferation study in the 1st part of the thesis. The great help of **Dr. Vladimír Sedlařík** and **Dr. Petr Stloukal** (Center of Polymer Systems, Tomas Bata University in Zlín, Czech Republic) to accomplish the 2nd part of the thesis is also appreciated.

The scholarship awarded by virtue of the bilateral cultural agreement between the Czech Republic and the Arab Republic of Egypt is gratefully acknowledged. Last but not least, many thanks to stuff members of *Chemistry Department*, *Faculty of Science*, *Ain Shams University*, stuff members of *Polymer Chemistry Department*, *NCRRT*, and members of irradiation facilities at *NCRRT* for their help and support.

Abstract

The present study has been organized in two main parts:

Part 1. This part describes a novel multistep physicochemical approach for the immobilization of D-glucosamine (GlcN) on poly(lactic acid) (PLA) surface in order to enhance its cytocompatibility for tissue engineering applications. The GlcNfunctionalized PLA surface is prepared by firstly introducing poly(acrylic acid) spacer arms via plasma- post-irradiation grafting technique. Factors affecting grafting yield are controlled to produce a suitable spacer for bioimmobilization. Afterwards, covalent coupling or physical adsorption of GlcN with/on the poly(acrylic acid) spacer is carried out. The modified surfaces are characterized by Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR), X-ray Photoelectron Infrared Spectroscopy (XPS), Contact angle measurements, and Atomic Force Microscopy (AFM). The cytocompatibility of the modified surfaces is assessed using primary mouse embryonic fibroblast (MEF) cells.

Part 2. In this part, novel antibacterial food packaging films based on low-density polyethylene (LDPE) and 4-allylanisole (ALY; a model essential oil) are produced by loading firstly the essential oil into various solid carriers, and then melt compounding with the polymer matrix. This technology aims at enhancing the thermal stability of the essential oil and sustaining its release over storage period. In addition, in order to evaluate the suitability of these emerged antibacterial films in packaging of foods which are intended to be sterilized with ionizing radiation, the effects of gamma irradiation on the properties of these films

are studied. The physico-chemical characteristics as well as the ALY release and antibacterial activity of the prepared films as affected by the type of the solid carrier and gamma irradiation are investigated.

Keywords: poly(lactic acid); plasma; D-glucosamine; tissue engineering; low-density polyethylene; composites; allylanisole; antibacterial food packaging.

TABLE OF CONTENTS

Abstract	iv
List of Figures	x
List of Tables	
List of Schemes	
List of Abbreviations	xvii
Aim of the Work	xviii

	page
Chapter I	
Introduction	
Part 1	
I.1.1. Tissue engineering: A cutting-edge alternative to	1
organ transplantation	
I.1.2. Desirable characteristics of scaffolds	4
I.1.3. Synthetic biodegradable polymers for tissue	6
engineering	
I.1.4. Surface bioimmobilization	8
Part 2	
I.2.1. Antimicrobial food packaging	11
I.2.2. Antimicrobial agents for food packaging	12
I.2.3. Methods for producing antimicrobial packaging	12
films	
I.2.3.1. Incorporation of antimicrobial agents directly	12
into polymers	
I.2.3.2. Coating of antimicrobials on polymer surfaces	13
I.2.3.3. Immobilization of antimicrobials by ionic or	13
covalent linkages onto polymers	
I.2.3.4. Use of polymers that are inherently	14

antimicrobial	
I.2.4. Polyethylene packaging	14
I.2.5. Food preservation using ionizing radiation	15
I.2.6. Effect of ionizing radiation on polymeric	18
packaging materials	
Chapter II	
Literature review	
Part 1	
II.1.1. Surface bioimmobilization of synthetic	21
polymeric materials for tissue engineering applications	
II.1.1. Carbohydrate immobilization	21
II.1.1.2. Protein immobilization	27
Part 2	
II.2.1. Development and characterization of	
antimicrobial packaging incorporated with essential	43
oils and plant extracts	
II.2.1.1. Synthetic polymer systems	43
II.2.1.2. Natural polymer systems	50
II.2.2. Radiation processing of antimicrobial	54
packaging	54
II.2.3. Synergistic effect of radiation sterilization and	
antimicrobial coating on food preservation	57
Chapter III	
Experimental	
III.1. Materials	61

III.2. Immobilization of GlcN onto PLA surface	62
III.2.1. Preparation of PLA films and plasma treatment	62
III.2.2. Graft copolymerization of AAc onto plasma	62
activated PLA films	
III.2.3. Covalent immobilization of GlcN on AAc	63
grafted PLA	
III.2.4. Physical immobilization of GlcN on AAc	64
grafted PLA	
III.3. Preparation and irradiation of antibacterial LDPE	64
composite films	
III.3.1. Preparation of the antibacterial fillers	64
III.3.2. Thermal processing of antibacterial LDPE	65
composite films	
III.3.3. Gamma radiation of antibacterial LDPE	65
composite films	
III.4. Characterization techniques	66
III.4.1. Fourier Transform Infrared Spectroscopy	66
(FTIR)	
III.4.2. X-ray photoelectron spectroscopy (XPS)	66
III.4.3. Contact angle measurement and surface energy	67
evaluation	
III.4.4. Atomic force microscopy (AFM)	67
III.4.5. Rheology	68
III.4.6. Differential scanning calorimetry (DSC)	68

III.4.7. Tensile mechanical testing	69
III.4.8. Additive quantification of 4-allylanisole (ALY)	69
III.4.9. Accelerated release of 4-allylanisole (ALY)	70
III.4.10. Cell viability and morphology on modified PLA films	70
III.4.11. Antimicrobial testing for the developed antibacterial LDPE composite films	71
Chapter IV	
Results and discussion	
Part 1. Plasma-assisted immobilization of D-	
glucosamine onto poly(lactic acid) surface for	73
potential use in tissue engineering	
IV.1.1. Factors affecting and controlling the grafting	70
yield of PLA-g-PAAc films	76
IV.1.1.1. Effect of plasma parameters	76
IV.1.1.1. Effect of plasma treatment time	76
IV.1.1.2. Effect of plasma power	77
IV.1.1.3. Effect of air feed rate	79
IV.1.1.2. Effect of grafting conditions	80
IV.1.1.2.1. Effect of monomer concentration	80
IV.1.1.2.2. Effect of inhibitor concentration	81
IV.1.1.2.3. Effect of grafting temperature	83
IV.1.1.2.4. Effect of film surface area	84
IV.1.2. Immobilization of D-glucosamine (GlcN)	85
IV.1.2.1. Surface chemistry	85
IV.1.2.2. Wettability and surface energy	92

IV.1.2.3. Surface morphology	98
IV.1.3. Cytocompatibility evaluation	108
Part 2. Development and radiation processing of antibacterial food packaging composite films based on low-density polyethylene and a volatile essential oil loaded into various solid carriers	116
IV.2.1. Infrared spectroscopic analysis	117
IV.2.2. Rheological properties: The Cole-Cole plots	126
IV.2.3. Thermal parameters	137
IV.2.4. Tensile mechanical properties	147
IV.2.5. Surface wettability	151
IV.2.6. Quantification of 4-allylanisole (ALY) in the prepared composite samples	155
IV.2.7. Accelerated release study of 4-allylanisole (ALY)	158
IV.2.8. Antimicrobial activity	160
Summary and Conclusions	164
References	171
Arabic Summary	

List of Figures

Fig. 1. Dependence of grafting yield on plasma	77
exposure time. Grafting conditions: [AAc] = 10 vol%;	
[inhibitor] = 0.1 wt%; temp. = 45 °C; time = 24 h; film	
surface area = 30.4 cm ² ; volume of grafting solution =	
30 ml	
Fig. 2. Dependence of grafting yield on plasma power.	78
Grafting conditions: [AAc] = 10 vol%; [inhibitor] = 0.1	

wt%; temp. = 45 °C; time = 24 h; film surface area =	
30.4 cm2; volume of grafting solution = 30 ml	
Fig. 3. Dependence of grafting yield on air feed rate.	79
Grafting conditions: [AAc] = 10 vol%; [inhibitor] = 0.1	
wt%; temp. = 45 °C; time = 24 h; film surface area =	
30.4 cm ² ; volume of grafting solution = 30 ml	
Fig. 4. Dependence of grafting yield on monomer	81
concentration. Plasma treatment parameters: 50 W, 2	
min., 20 sccm; Volume of grafting solution = 30 ml;	
Reaction time = 24 h	
Fig. 5. Dependence of grafting yield on inhibitor	83
concentration. Plasma treatment parameters: 50 W, 2	
min., 20 sccm; Volume of grafting solution = 30 ml;	
Reaction time = 24 h	
Fig. 6. Dependence of grafting yield on reaction	84
temperature. Plasma treatment parameters: 50 W, 2	
min., 20 sccm; Volume of grafting solution = 30 ml;	
Reaction time = 24 h	
Fig. 7. Dependence of grafting yield on film surface	85
area. Volume of grafting solution = 30 ml; Reaction	
time = 24 h; Plasma treatment parameters: 50 W, 2	
min., 20 secm.	
Fig. 8. ATR-FTIR spectra for pristine PLA film (a),	87
plasma treated PLA film (b), PLA-g-PAAc film (128.7	
μg/cm ²) (c), GlcN covalently modified film (d), and	
GlcN physically modified film (e).	
Fig. 9. 3D AFM images for (a) pristine and (b) plasma	99
treated PLA films; plasma parameters: 50 W, 2 min.,	
20 sccm. (Scan size: $5 \mu m \times 5 \mu m$)	

Fig. 10. 3D AFM images for (a) PLA- <i>g</i> -PAAc (~11.0 μg/cm²) and (b) its corresponding GlcN-covalently	101
μg/cm ²) and (b) its corresponding GlcN-covalently	
modified film. (Scan size: 5 μ m \times 5 μ m)	
Fig. 11. 3D AFM images for (a) PLA-g-PAAc (~56.1	103
μg/cm ²) and (b) its corresponding GlcN-covalently and	
(c) physicaly modified films. (Scan size: $5 \mu m \times 5 \mu m$)	
Fig. 12. 3D AFM images for (a) PLA- <i>g</i> -PAAc (~128.7	105
μg/cm ²) and (b) its corresponding GlcN-covalently and	
(c) physicaly modified films. (Scan size: $5 \mu m \times 5 \mu m$)	
Fig. 13. Cytotoxicity presented as percentage of cell	110
viability cultured on pristine, plasma treated, AAc	
grafted (11.0 µg/cm ²) and corresponding GlcN-	
covalently modified PLA surfaces compared to the	
tissue culture polystyrene reference. Error bars	
represent standard deviation (SD; $n = 4$)	
Fig. 14. The cell morphology on tissue culture	111
polystyrene reference (a), pristine PLA (b), plasma	
treated PLA (c), AAc grafted PLA (11.0 µg/cm²) (d),	
and corresponding GlcN-covalently modified PLA (e).	
Individual cells are visualized through nuclei	
counterstain by Hoechst 33258 (blue), and the	
cytoskeleton is visualized by ActinRed TM 555 (red).	
Fig. 15. Cell proliferation after 48 hours of cultivation	115
on tissue polystyrene- reference (a), PLA-g-PAAc	
films prepared at (b) 56.1 and (c) 128.7 µg/cm ² grafting	
yields, and their corresponding GlcN-functionalized	
surfaces by physical adsorption (d and e), and by	
covalent immobilization (f and g). Individual cells are	
visualized through nuclei counterstain by Hoechst	

33258 (blue), and the cytoskeleton is visualized by	
ActinRed TM 555 (red).	
Fig. 16. ATR-FTIR spectra for non-irradiated pure	120
LDPE and its MS composites (30 wt%) with and	120
without ALY.	
Fig. 17. ATR-FTIR spectra for non-irradiated pure	121
LDPE and its WF composites (30 wt%) with and	121
without ALY.	
Fig. 18. ATR-FTIR spectra for non-irradiated and	123
irradiated pure LDPE.	123
Fig. 19. ATR-FTIR spectra for non-irradiated and	124
irradiated LDPE/ MS-ALY (30 wt%).	144
	105
Fig. 20. ATR-FTIR spectra for non-irradiated and	125
irradiated LDPE/WF-ALY (30%).	120
Fig. 21. Cole—Cole plots and related parameters for	129
non-irradiated and irradiated pure LDPE samples at	
190 °C.	420
Fig. 22. Cole—Cole plots and related parameters for	130
non-irradiated and irradiated LDPE/MS (20 wt%)	
samples at 190 °C.	
Fig. 23. Cole–Cole plots and related parameters for	131
non-irradiated and irradiated LDPE/MS (30 wt%)	
samples at 190 °C.	
Fig. 24. Cole—Cole plots and related parameters for	132
non-irradiated and irradiated LDPE/WF (20 wt%)	
samples at 190 °C.	
Fig. 25. Cole–Cole plots and related parameters for	133
non-irradiated and irradiated LDPE/WF (30 wt%)	
samples at 190 °C.	

Fig. 26. First and second heating DSC curves for the	141
pure LDPE before and after exposure to gamma	171
1	
radiation at various doses.	4.40
Fig. 27. First and second heating DSC curves for	142
LDPE/MS (20 wt%) before and after exposure to	
gamma radiation at various doses.	
Fig. 28. First and second heating DSC curves for	143
LDPE/MS (30 wt%) before and after exposure to	
gamma radiation at various doses.	
Fig. 29. First and second heating DSC curves for	144
LDPE/WF (20 wt%) before and after exposure to	
gamma radiation at various doses.	
Fig. 30. First and second heating DSC curves for	145
	145
LDPE/WF (30 wt%) before and after exposure to	
gamma radiation at various doses.	4 70
Fig. 31. Tensile modulus of pure LDPE and composite	150
samples before and after exposure to gamma radiation	
at various doses.	
Fig. 32. Tensile strength of pure LDPE and composite	150
samples before and after exposure to gamma radiation	
at various doses.	
Fig. 33. Elongation at break of pure LDPE and	151
composite samples before and after exposure to gamma	
radiation at various doses.	
Fig. 34. Water contact angle (WCA) measurements for	153
the pure LDPE and composite films with and without	
ALY before exposure to gamma radiation.	
	155
Fig. 35. Water contact angle (WCA) measurements for	133
the pure LDPE and its MS and WF composite films	