INHERITANCE OF PHOTO-THERMO SENSITIVE GENIC MALE STERILITY IN RICE

By

RIZK MOHAMED ALI ABDALLAH

B.Sc. Agric. Sc. (Genetics), Tanta University, Y...

A thesis submitted in partial fulfillment of the requirements for the degree of

in Agricultural Sciences

(Genetics)

Department of Genetics
Faculty of Agriculture
Ain Shams University

Approval Sheet

INHERITANCE OF PHOTO-THERMO SENSITIVE GENIC MALE STERILITY IN RICE

By

RIZK MOHAMED ALI ABDALLAH

B.Sc. Agric. Sc. (Genetics), Tanta University, Y • • • M.Sc. Agric. Sc. (Genetics), Mansoura University, Y • • • A

This thesis for Ph.D. degree has been approved by:

Dr. Ahmed Abdel-Salam Mahmoud	
Prof. Emeritus of Genetics, Faculty of University	Agriculture, El Zgazig
Dr. Alia Ahmed El-Seoudy	
Prof. Emeritus Genetics, Faculty of Ag University	riculture, Ain Shams
Dr. Eman Mahmoud Fahmy	
Prof. of Genetics, Faculty of Agriculture	e, Ain Shams University
Date of Examination: \\\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

INHERITANCE OF PHOTO-THERMO SENSITIVE GENIC MALE STERILITY IN RICE

$\mathbf{B}\mathbf{v}$

RIZK MOHAMED ALI ABDALLAH

B.Sc. Agric. Sc. (Genetics), Tanta University, Y...

Under the supervision of:

Dr. Eman Mahmoud Fahmy

Prof. of Genetics, Genetics Dept., Faculty of Agric., Ain Shams University (Principle Supervisor).

Dr. Sabah Mohamed Hassan

Associate Prof. of Genetics, Dept. of Genetics, Faculty of Agric., Ain Shams University.

Dr. Hamdi Fatouh El-Mowafi

Head of Research, Field Crops Res. Inst., ARC.

ABSTRACT

Rizk Mohamed Ali AbdAllah: Inheritance of Photo-Thermo sensitive Genic Male Sterility in Rice. Unpublished Ph.D. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, ۲۰۱۲.

Different rice lines involved four diverse Photo-Thermosensitive Genic Male Sterile (PTGMS) lines; PTGMS-°¹, PTGMS-°¹, PTGMS-¹² and PTGMS-^¹ were used as "female lines". Five restorer lines; Giza ¹¹¹, Giza ¹¹¹, JRL-¹°, JRL-¹¹, and JRL-¹°, were used as "male testers" with their F¹ hybrids in line x tester design to study the performance of some agronomic, yield-related and panicle traits. Hybrid rice proved to be an effective and economical way to increase rice production output by at least ¹°-¹¹.% higher yield than commercial varieties. PTGMS-°¹ x JRL-¹°¹ and PTGMS-^¹ x JRL-¹°¹ hybrids showed highly significant values for yield-related traits.

PTGMS-°' x Giza 'VVR and PTGMS-77 x Giza 'VVR were the best hybrids for agronomic traits. In addition, PTGMS-^. x JRL-7°7, PTGMS-^. x JRL-97 and PTGMS-°' x Giza 'VVR gave the best combining abilities (general and specific) and heterosis for panicle traits and yield-related traits.

Key words: Rice, PTGMS, Combining ability, Heterosis, RAPD, SSRs.

LIST OF ABBREVIATIONS

Photo-Thermo Sensitive Genic Male **PTGMS**

Sterility

Number of filled grains / panicle FG/Pn

General combining ability **GCA**

GW 1 · · · grain weight

Number of days to heading **HDG**

Plant height Ht

LSD Least significant difference Heterosis versus mid parents MP Primary Branches / Panicle PB/Pn **PCR** Polymerase Chain Reaction

Panicle length PnL **PnW** Panicle weight

Random Amplified Polymorphic DNA **RAPD**

SCA Specific combining ability

Heterosis versus the check variety SH

Spikelets fertility SpFert

SSRs Simple Sequence Repeats Ti/P Number of tillers / plant

Grain yield / plant Yld/P

N.B. Most of these abbreviations were copied from:

Standard Evaluation System for Rice, Frd Edition, June, 1911, International

Rice Testing Program.

ACKNOWLEDGMENTS

Thanks for **Allah**, the greatest and almighty on his uncountable and infinitive graces, guides me to the Islam and teaches me things that I didn't know.

Deep thanks are extended to **Prof. Dr. Eman Mahmoud Fahmy,** Professor of Genetics and Head of Genetics Dept., Ain Shams University for her kind supervision, suggesting the problem, the facilities she offered to me during the preparation of this work, her valuable advices and for writing the manuscript.

I wish to express my sincere appreciation and deep gratitude to **Dr. Sabah Mahmoud Mohamed**, Associate Professor of Genetics, Genetics Dept., Ain Shams University for her kind supervision, energetic guidance and conclusive instructions throughout the course of this investigation.

My deep thanks are offered to **Prof. Dr. Hamdi Fatouh El-Mowafi,** Deputy Director General of Field Crops Research Institute, Head of Rice Research program in Egypt, for his kind supervision, suggesting the problem, the facilities he offered to me during the preparation of this work and for reviewing the manuscript.

I would like to express my deepest thanks and sincere appreciation to **Dr. Amr Reda and Dr. Aisam Faied** for help in every part of my work, the statistical analysis, molecular genetic analysis and in the field experiments.

Many thanks to my colleagues; the staff members of Molecular Genetics Lab, Faculty of Agriculture, Ain Shams University for their great help and encouragement.

Finally, many thanks to my colleagues; the staff members of Rice Research and Training Center (RRTC), ARC, Sakha, Kafr El-Sheikh, Egypt, for their great help and encouragement.

I am indebted to my family, parents, my brothers, my sister and my fiancée for their continuous encouragement and praying for me.

CONTENTS

Title	Page
List of Tables	III
List of Figures	IV
Abbreviations	V
1. INTRODUCTION	١
7. REVIEW OF LITERATURE	٤
Y, \ . Photo-Thermo genetic male sterility (PTGMS)	٤
Y,Y.Combining ability and gene action	11
Y, W. Heterosis	۲۱
۲, ٤. Molecular genetic analysis	۲٩
T. MATERIALS AND METHODS	
	77
",\.Agronomic traits	٣٧
۳,۲. Yield-related traits	٣٧
r,r.Panicle traits	٣٨
۳٫٤.Statistical analyses	٣٨
۳٫٤٫۱. Estimates of combining ability	٣٨
۳,٤,١,١. Line x tester analysis	٣9
۳,٤,١,٢. Estimates of GCA effects	٣9
۳٫٤٫١٫۳. Estimates of SCA effects	٤٠
۳,٤,۲. Estimates of heterosis	٤١
۳٫٤٫۲٫۱. Heterosis versus the mid-parents % (MP)	٤١
۳,٤,۲,۲. Heterosis over the better parent % (BP)	٤٢
۳٫٤٫۲٫۳. Standard heterosis or heterosis over the check variety %	٤٢
۳٫٤٫۳. Analysis of variance and heritability	٤٣
۳,٤,٣,١. Genetic parameters	٤٣
۳٫٤٫۳.۲. Heritability	٤٤
۳,۰. Molecular marker analysis	٤٤
₹.RESULTS AND DISCUSSION	07
٤,١. Mean performance	٥٢
٤,١,١. Agronomic characters	07
٤,١,٢. Yield-related traits	00
٤,١,٣. Panicle traits	OV
٤,٢. Combining ability	71
٤,٢,١. Agronomic traits	71
£, Y, \. General combining ability effects (GCA)	77
£, Y, Y. Specific combining ability effects (SCA)	٦٤

٤,٢,٢. Yield-related traits	٦٦
٤,٢,٢,٢. General combining ability effects (GCA)	77
٤,٢,٢,٣. Specific combining ability effects (SCA)	٦٨
٤,٢,٣.Panicle traits	٧.
٤,٢,٣.١. General combining ability (GCA)	٧.
٤,٢,٣,٢. Specific combining ability (SCA)	٧٣
٤,٣. Heterosis Effects	٧٥
٤,٣,١.Agronomic traits	٧٥
٤,٣,١,١. Heading dates	٧٦
٤,٣,١,٢.Plant height	٧٦
٤,٣,١,٣. Tillers /plant	77
٤,٣,٢.Yield related traits	۸.
٤,٣,٢,١. Grain yield / plant	٨٠
٤,٣,٢,١٠٠-grain weight (g)	۸.
٤,٣,٢,٣.Spikelets fertility %	٨٤
٤,٣,٣. Panicle traits	٨٤
٤,٣,٣,١. Panicle Length	٨٤
٤٣,٣,١.Panicle Weight	Λo
٤,٣,٣,٣. Number of Filled Grains / Panicle	Λo
٤,٣,٣,٤. Number of Primary Branches / Panicle	八つ
¿, ¿. Genetic parameters	٩.
٤,٤,١. Agronomic traits	٩.
٤,٤,٢.Yield –related traits	9 7
٤,٤,٣. Panicle traits	90
٤,٥. Molecular genetic analyses	9 ٧
٤,٥,١. Genetic diversity of the tested genotypes based on RAPD-	
PCR and SSRs-PCR techniques	97
ورم،۲.Clustering of the genotypes based on RAPD	
primers variations	١١.
SUMMARY AND CONCLUSION	۱۱٤
REFERENCES	۱۲۱
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
(')	Photo-Thermo sensitive Genic Male Sterility lines (PTGMS) and tester lines/varieties used for the experiment.	٣٧
(٢)	The four different \(\cdot \c	٥,
(٣)	The mean performances of some agronomic traits in rice genotypes.	٥٣
(٤)	The mean performances of some yield-related traits in rice genotypes.	٥٦
(0)	The mean performances of the four panicle traits.	٥٩
(٢)	Mean square values of line x tester analysis for agronomic traits	٦٢
(Y)	GCA estimates of the PTGMS lines for the three agronomic traits in rice GCA estimates of the tester lines for the three agronomic traits in rice.	٦٣ ٦٤
(^) (⁹)	SCA estimates of the rice hybrid combinations for the three agronomic traits.	70
(1.)	Mean square values of line x tester analysis for yield related traits	٦٦
(11)	GCA estimates of the PTGMS rice lines for the three yield-related traits	٦٧
(11)	GCA estimates of the rice-tester lines for the three yield-related traits	٦٨
(۲۳)	SCA estimates of the hybrid combinations for yield-related traits	٦٩
(١٤)	Mean square values of line x tester analysis for panicle traits in rice	٧١
(10)	GCA estimates of the rice PTGMS lines for panicle traits	77
(۲۲)	GCA estimates of the rice testers for panicle traits	77
(۱۷)	SCA estimates of the rice hybrid combinations for panicle traits	٧٤
(۱۸)	Heterosis estimates over the better-parents (BP) for agronomic traits	Y Y
(۱۹)	Heterosis estimates over mid-parents (MP) for agronomic traits	٧٨
(۲۰)	Standard heterosis (SH) estimates for agronomic traits	٧٩
(۲۱)	Heterosis estimates over better-parents (BP) for yield-related traits	۸١
(۲۲)	Heterosis estimates over mid-parents (MP) for yield-related traits	٨٢
(۲۳)	Standard heterosis (SH) estimates for yield-related traits	۸۳
(۲٤)	Heterosis estimates over better-parents (BP) for panicle traits	۸٧
(°7)	Heterosis estimates over mid-parents (MP) for panicle traits	٨٨
(۲۲)	Standard heterosis (SH) estimates of panicle traits	٨٩
(۲۲)	Genetic parameters for agronomic trait	91
(۲۸)	Genetic parameters for yield-related traits	9 £
(۴۲)	Genetic parameters for panicle traits	97

(**)	The presence (1) and absence (1) of DNA bands of the 50 accessions as revealed by RAPD-PCR technique using primer OP-A-11.	١
(٣١)	The presence (') and absence (·) of DNA bands of the $\frac{\xi}{\circ}$ accessions as revealed by RAPD-PCR technique using primer OP-A- $\frac{\xi}{\circ}$	1.7
(٣٢)	The presence (1) and absence (1) of DNA bands of the 50 accessions as revealed by RAPD-PCR technique using primer OP-A-17	1.7
(٣٣)	The presence (1) and absence (1) of DNA bands of the 40 accessions as revealed by RAPD-PCR technique using primer OP-A-1A	1.9

LIST OF FIGURES

Figure no	Title	Page
(¹ -a)	Agarose gel electrophoresis of OP-A-· primer with TT rice genotypes.	٩٨
(¹-b)	Agarose gel electrophoresis of OP-A-) primer with TT rice genotypes.	99
(^۲ -a)	Agarose gel electrophoresis of OP-A-•° primer with ۲۳ rice genotypes.	١.١
(۲-b)	Agarose gel electrophoresis of OP-A- • o primer with ۲۲ rice genotypes.	1.7
(٣-a)	Agarose gel electrophoresis of primer OP-A-· V with TT rice genotypes.	١٠٤
(٣-b)	Agarose gel electrophoresis of primer OP-A-· V with TT rice genotypes.	1.0
([€] -a)	Agarose gel electrophoresis of primer OP-A-+^ with TT rice genotypes.	1.4
(ź-b)	Agarose gel electrophoresis of primer OP-A-+^ with ۲۲ rice genotypes.	١٠٨
(°)	Agarose gel electrophoresis of RM\\\operatorname{ror}\) primer pair with \\operatorname{ror}\) rice genotypes.	11.
(7)	Dendrogram of the $\mathfrak{t} \circ$ rice genotypes based on NTSYS of the Four RAPD primers, $\mathfrak{t} - \mathfrak{o} = hybrids$, $\mathfrak{t} - \mathfrak{t} \circ = Indica$ PTGMS, $\mathfrak{t} - \mathfrak{t} \circ = testers$, $\mathfrak{t} - \mathfrak{t} \circ = hybrids$.	117

LIST OF ABBREVIATIONS

PTGMS Photo-Thermo Sensitive Genic Male

Sterility

FG/Pn Number of filled grains / panicle

GCA General combining ability

GW -grain weight

HDG Number of days to heading

Ht Plant height

LSD Least significant difference MP Heterosis versus mid parents PB/Pn Primary Branches / Panicle PCR Polymerase Chain Reaction

PnL Panicle length PnW Panicle weight

RAPD Random Amplified Polymorphic DNA

SCA Specific combining ability

SH Heterosis versus the check variety

SpFert Spikelets fertility

SSRs Simple Sequence Repeats Ti/P Number of tillers / plant

Yld/P Grain yield / plant

N.B. Most of these abbreviations were copied from: Standard Evaluation System for Rice, rd Edition, June, , International Rice Testing Program.

1. INTRODUCTION

Rice (Oryza sativa L.) is the world's most important food crop and a primary source of food for more than half of the world's population. More than 9.1/2 of the world's rice is grown and consumed in Asia, where \''.\' of the world's people live. Rice accounts for ro-vo% of the calories consumed by more than three billion Asians. Major increases in rice production occurred during last four decades due to the adoption of green revolution technology. However, the rate of growth of rice crop has slowed down. Whereas rice production increased at the annual growth rate of 7,59% during 197.-199., the annual growth rate was 1,7.% during 199.-7... lowest level since 1975 and price of rice is showing upward trend in the domestic and international markets. The population of rice consumers is continuing to increase and the demand for rice is also going up due to improved living standards particularly in Africa. According to various estimates, \(\tilde{\pi}\), more rice should be produced by Y. To meet this challenge rice varieties with higher yield potential and greater yield stability are needed. Although yield potential of rice is \(\cdot \) tons per hectare, farmers, on the average, harvest about \(\cdot \) tons per hectare from irrigated lands. This yield gap is due to the losses caused by biotic and abiotic stresses (Khush and Jena, Y., 4).

Exploitation of heterosis has played a significant role to increase productivity of several crops. Availability of suitable pollination control systems and the extent of outcrossing between female and male parents, existence of exploitation level of heterosis and feasibility of hybrid seeds production on large scale are the key factors for determining the success of commercial exploitation of heterosis in any crop.

China is the first country to exploit commercially heterosis in rice. Hybrid rice technology was successfully developed in 1977 using male sterility-fertility restoration system (**Anonymous**, 1979). The success story of commercial hybrid rice cultivation in China, India, Vietnam, Philippines, and Bangladesh, has encouraged Egypt to adopt this technology. The development of hybrid rice technology and the adaptation of hybrid to Egyptian environments offer one approach to the problem of matching food supply to expected demand (**Bastawisi** *et al.*, 7 • • 7).

Combining ability is a measure of gene action (additive and non-additive) the general combining ability (GCA) effects largely involve additive gene effects, whereas, specific combining ability (SCA) represents only non-additive gene action. The presence of non-additive genetic variance offers scope for exploration of heterosis. The parents with good GCA could be used to obtain hybrids with strong heterosis and SCA (Yang et al., Y...; El-Mowafi, Y...; El-Mowafi,

Two-line systems based on photo/thermo-sensitive genic male sterile (P/TGMS) lines are known. They are affected by nuclear recessive gene (*P/TGMS*), and the environment effects the gene(s)

expression, therefore, the P/TGMS also is called environmental genic male sterile (EGMS). The EGMS lines are sterile in long day (LD) and / or high temperature (HT), while become fertile in short day (SD) and / or low temperature (LT). During the sterile phase, they could be used to produce hybrid seeds through crossing them with normal fertile male line. The EGMS lines possess many advantages: (¹) higher selection and utilization; (¹) not sensitive to cytoplasmic type and sterile lines having different cytoplasmic types could be breed easily; and (˚) resources of restoring genes are wide ranging which could be used as restoring lines provided they are not the heterozygotes of this recessive genic male sterile gene. Thus up to date achievements in research of genetic breeding of rice can be collected and utilized for exploitation of heterosis (Attia, ¬··).

The objectives of this investigation were to:

- Study the magnitude of PTGMS genotypic variation and the magnitude of both general and specific combining abilities.
- Assess the potentiality of heterosis expression for agronomic, panicle and yield-related traits.
- Estimate the genetical behavior and heritability for different traits.
- Apply molecular genetic analyses to study the diversity and the phylogenetic relationships among some PTGMS lines, non PTGMS (testers) and their hybrid combinations using RAPD and SSRs-PCR techniques.

7. REVIEW OF LITERATURE

Photo-thermosensitive genic male sterility system is controlled by nuclear gene expression, which is influenced by environmental factors such as temperature, day length, or both.

Combining ability refers to the ability of a genotype to transfer its desirable traits to its progenies. General combining ability (GCA) is the average performance of a parent in a series of crosses. Specific combining ability (SCA) is the deviation in the performance of a hybrid from the performance predicted on the basis of the general combining ability of its parents.

The term heterosis, often used synonymously with hybrid vigor, refers to the superiority of the F \(\) hybrid over its parents. Heterosis may be positive or negative. Both positive and negative heterosis are useful in crop improvement, depending on the breeding objectives. For example, positive heterosis is desired for yield, but we look for negative heterosis for traits like days to maturity and height.

Molecular genetic analysis are useful techniques to detect genetic variation among different genotypes.

Y, V. Photo-Thermo sensitive genic male sterility (PTGMS)

Chen et al. $(\Upsilon \cdot \cdot \cdot)$ crossed four photoperiod-thermo-sensitive genetically male sterile rice lines, Pei'ai $\Upsilon \xi s$, N $\xi \Upsilon \Upsilon s$, $\Upsilon \cdot \Lambda s$ and LS Υs , with $\Upsilon \Upsilon$ ecotypes of Asian cultivated rice in order to select heterotic two-line japonica hybrids for north China based on the analysis of F\s. The best ecotypes for crossing with each of the male sterile lines to give heterotic hybrids are indicated. The F\s between LS Υs line and the javanica and north China ecotype (the latter including local and