ASSESSMENT OF THE CAROTID ARTERY STATE IN PATIENTS WITH OBSTRUCTIVE SLEEP APNEA SYNDROME USING THE CAROTID DUPLEX

Thesis

Submitted for Partial Fulfillment for M.D. Degree in Chest Diseases

By

Mostafa Shawki Ahmed M.B., B. Ch. & M.Sc.

Supervised By

Professor Samiha Sayed Ahmed Ashmawi

Professor of Chest Diseases & Head of Chest Department. Faculty of Medicine, Ain Shams University

Professor Laila Ashour Helala

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Professor Adel Mohamed Said

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Doctor Aya Mohamed Abdel-Daym

Lecturer of Chest Diseases
Faculty of Medicine, Ain Shams University

Doctor Annie Mohamed Nasr Mehana

Assistant Professor of Radio-diagnosis Faculty of Medicine, Ain Shams University

Faculty of Medicine
AIN SHAMS UNIVERSITY

2008

LIST OF ABBREVIATIONS

ACAT Acyl-COA cholesterol acyltransfrase

AHI Apnea hypopnea index

ALOD Average low oxygen of all desaturation

ANP Atrial natriuretic peptide

ASDA American sleep disorder association

BHI Breath holding index

BHR Basal heart rate

BiPAP Bilevel positive airway pressure

BMI Body mass index

CBFV Cerebral blood flow velocity

CCA Common carotid artery
CHF Congestive heart failure

CNS Central nervous system

CRF Chronic renal failure

CSA Central sleep apnea

CT Computed tomography

CVS Cardiovascular system

DI Desaturation index

ECA External carotid artery

ECG Electrocardiogram

EDS Excessive daytime sleepiness

EMG Electromyogram

EOG Electrooculogram

ESG Electroencephologram

FFA Free fatty acid

FH Familial hypercholestrolaemia

FRC Functional residual capacity

HAL Hepatic acylglycerol lipase

HCT Haematocrit

HDL High density lipoprotein

HRT Hormonal replacement therapy

HTN Hypertension

ICA Internal carotid artery

ICAM Intracellular adhesion molecule

ICSD International classification of sleep disorder

IHD Ischemic heart disease

IMT Intima media thickness

LCAT Lectithin-cholesterol acyltransferase

LDL low density lipoprotein

LPL Lipoprotein lipase

MRAs Mandibular repositioning appliances

MRI Magnetic resonance imaging

MSLT Multiple sleep latency test

MWT Maintenance of wake fullness test

nCPAP Nasal continuous positive airway pressure

NREM Non rapid eye movement

OA Oral appliance

OSAHS Obstructive sleep apnea-hypopnea syndrome

OSAS Obstructive sleep apnea syndrome

OSH Obstructive sleep hypopnea

P_aO₂ Alveolar oxygen tension

PCO₂ Carbon dioxide tension

PHT Pulmonary hypertension

PSG Polysomnography

PVC Premature ventricular contraction

RDI Respiratory disturbance index

REM Rapid eye movement

RERA Respiratory effort-related arousal

S_aO₂ Arterial oxygen saturation

SDB Sleep disorder breathing

SWS Slow wave sleep

TCD Transcranial Doppler

TG Triglycerides

TIA Transient ischemic attack

TRD Tongue-retaining device

TSH Thyroid stimulating hormone

TST Total sleep time

UARS Upper airway resistance syndrome

UPPP Uvulopalatophrayngioplasty

VCAM Vascular cell adhesion molecule

VLDL Very low density lipoprotein

LIST OF FIGURES

No.	Title	Page
1	Actual hypnogram of a young adult male	7
2	Schematic representation of the velopharynx changes	40
	in size and shape during the respiratory cycles	
3	A: CPAP therapy using nasal pillows	91
	B: CPAP therapy using a full-face mask	
4	The origin of the ascending aorta and its major	115
	branches	
5	The anatomy of the common carotid artery	117
6	Endothelial dysfunction in atherosclerosis	123
7	Angiogram showing atherosclerotic stenosis of the	126
	left ICA	
8	Patients position for duplex carotid examination	138
9	Normal arterial anatomy	141
10	Minimal plaque formation	142
11	Differences in plaque echogenicity. (A) fibrofatty,	147
	(B) fibrous plaque	
12	Continued C, strong echoes emanate from a focal	148
	calcification D, an acoustic shadow from diffuse	
	calcification	
13	Non-homogeneous plaque	149
14	Patient's connection to polysomnography	153
15	Duplex ultrasound	157

No.	Title	Page
16	Comparison between patients and control groups as regards sex distribution	164
17	Comparison between patients and control as regards mean values of Age and BMI	165
18	Comparison between patients and control as regards mean values of AI, HI and TST	167
19	Comparison between patients and control as regards mean values of AHI, DI, % snoring, arousal I	167
20	Comparison between patients and control as regards mean values of basal O2, Min O2, BHR.	167
21	Comparison between patients and control as regards mean values of intema media thickness of carotid arteries	168
22	Comparison between patients and control as regards mean values of lipid profile	169
23	Linear regression analysis showing correlation between AHI and LT-CCA among patients with OSAS	171
24	Linear regression analysis showing correlation between AHI and RT-CCA among patients with OSAS	172
25	Linear regression analysis showing correlation between AHI and RT-CCA among patients with OSAS	173
26	Linear regression analysis showing correlation between DI and RT-ICA among patients with OSAS	175
27	Linear regression analysis showing correlation between DI and RT-CCA among patients with OSAS	176
28	Linear regression analysis showing correlation between Min. O2 and LT-ICA among patients with OSAS	180
29	Linear regression analysis showing correlation between %SNORING and Rt-CCA among patients with OSAS	185

No.	Title	Page
30	Linear regression analysis showing correlation	187
	between ALOD<88 and LT-CCA among patients	10,
	with OSAS	
31	Linear regression analysis showing correlation	188
	between ALOD<88 and RT-CCA among patients	100
	with OSAS	
32	Linear regression analysis showing correlation	190
	between ALOD-T and LT-CCA among patients with	1) 0
	OSAS	
33	Linear regression analysis showing correlation	191
	between ALOD-T and RT-CCA among patients with	171
	OSAS	
34	Linear regression analysis showing correlation	193
	between ALOD<90 and RT-CCA among patients	175
	with OSAS	

LIST OF TABLES

No.	Title	Page
1	Normal stages of sleep	8
2	Definitions for some terms in sleep medicine	16
3	Dimensions and severity of OSAS	26
4	Prevalence of OSA from three studies with similar	28
	design and methodology	
5	Factors contributing to the pathophysiology of OSAS	29
6	Diagnostic criteria for OSAHS	45
7	Example scoring on Epworth sleepiness scale	49
8	Generally accepted interpretations of Epworth	50
	sleepiness score	
9	Clinical symptomatology of OSAS	51
10	Predictors of treatment outcome	95
11	Surgical indications of treatment of OSAS	99
12	surgical contraindications for surgery in treatment of	99
	OSAS	
13	Distribution of study population	164
14	Comparison between the mean value of age, BMI	165
	among patients with OSAS & Control Subjects	
15	Comparison between the respiratory parameters,	166
	oxygen desaturation parameters and other	
	polysomnographic events among patients with OSAS	
	& Control subjects.	

No.	Title	Page
16	Comparison between intima-media thickness of	168
	carotid arteries among patients with OSAS and	
	control subjects	
17	Comparison between lipid profile among patients	169
	with OSAS and control subjects	
18	Correlation between AHI and intima-media thickness	170
	of carotid arteries among patients with OSAS	
19	Correlation between desaturation index and intima-	174
	media thickness of carotid arteries among patients	
	with OSAS	
20	Correlation between BMI and intima-media thickness of the carotid arteries among patients with OSAS	177
21	Correlation between age and intima- media thickness of carotid arteries among patients with OSAS.	178
22	Correlation between minimal O ₂ value and intimamedia thickness of carotid arteries among patients with OSAS	179
23	Correlation between total cholesterol and intima- media thickness of carotid arteries among patients with OSAS	181
24	Correlation between TG and intima media thickness of carotid arteries among patients with OSAS	182
25	Correlation between AHI and lipid profile among patients with OSAS.	183
26	Correlation between % of snoring and intima- media thickness of carotid arteries among the patients with OSAS.	184

No.	Title	Page
27	Correlate between average low O2 desaturation	186
	below 88% and IMT of carotid arteries among	
	patients with OSAS	
28	Correlation between average low oxygen of all	189
	desaturation and IMT of carotid arteries among	10)
	patients with OSAS	
29	Correlation between average low oxygen	192
	desaturation below 90% and IMT of carotid arteries	1,72
	among patients with OSAS	

CONTENTS

Page
Acknowledgement · · · · · I
List of Abbreviations · · · · · II
List of Figures · · · · · · · · V
List of Tables · · · · · VII
INTRODUCTION · · · · · · · 1
AIM OF THE WORK
REVIEW OF LITERATURE
Physiology of Sleep ······4
Diagnosis of OSAS · · · · · · 45
Complication of OSAS······66
Treatment of OSAS······84
Dyslipidemia ·······105
Anatomy of carotid artery ······114
Syndrome (Z)127
Instrumentation in Doppler and B-mode ultrasonography ·· 132
PATIENTS AND METHODS 150
RESULTS 164
DISCUSSION 194
SUMMARY & CONCLUSIONS 209
RECOMMENDATIONS213
REFERENCES213
ARARIC SUMMARY

Acknowledgment

Thank you Mighty ALLAH for helping me to finish this work.

I would like to express my profound gratitude & deepest appreciation to **Prof. Samiha Sayed Ahmed Ashmawi,** Professor of Chest Diseases & Head of Chest Department, Ain Shams University, for her constant advice, valuable instructions & for the time & effort she devoted throughout the entire course of the study.

I am deeply thankful to **Prof. Laila Ashour Helala**, Professor of Chest Diseases, Ain Shams University, for her willing assistance, enlightening comments & continuous encouragement along the entire course of the study.

I have the greatest pleasure in acknowledging **Dr.**Adel Mohamed Said, Professor of Chest Diseases, Ain Shams University, for his scientific guidance, constructive effort L continuous support along the entire course of the study.

I would like to extend cordial appreciation \mathcal{L} infinite gratitude to Dr. Aya Mohamed Abdel-Daym, Lecturer of Chest Diseases, Ain Shams University, she allowed me to peruse this topic that helped me foresee new horizons.

I would like to thank **Dr. Annie M. Nasr Mehana**, Assistant Professor of Radio-diagnosis, Ain Shams University, for her kind help & generous assistance.

INTRODUCTION

Obstructive sleep apnea syndrome is the periodic reduction (hypopnea) or cessation of breathing (apnea) due to narrowing of the upper airways during sleep. The main symptom is daytime sleepiness, and it's thought to be a cause of premature death, hypertension, ischemic heart disease, stroke and road traffic accident (*Douglas*, 1994; Simonds, 1994).

Obstructive sleep apnea syndrome (OSAS) is associated with increased cardiovascular morbidity and mortality (*Schulz et al.*, 2005). Epidemiological studies have suggested a pathphysiological link between sleep apnea syndrome and cerebrovascular disease. The mechanism by which sleep disorder can affect the predisposition to developing stroke is not clear (*Silvestrini et al.*, 2002).

The oxygen desaturation accompanying apneic events can promote degenerative changes at the level of arterial walls (*Gainer*, 1987). This fact suggests that the link between obstructive sleep apnea and stroke could be due, at least in part, to an increase in the progression of atherosclerosis process at the level of cerebral arteries (*Silvestrini et al.*, 2002).

Remzi et al. (2005), suggested that patients with O.S.A.S. have higher predisposition to developing atherosclerotic degeneration in the carotid arteries which seem to be independent of the coexistence of classic risk factors (i.e hypertension, diabetes mellitus, and hypercholesterolemia).

Ultrasonographic examination of the cerebral arteries is a simple and non invasive method for quantifying subclinical arterial wall thickening and atherosclerosis progression (*Kaynak et al.*, 2003).