

محضر
اجتماع لجنة الحكم على الرسالة المقدمة من الطبيب / و 2 2 عيد / لهناح عشاير من توطنة للحصول على درجة الماجستير / الدكتوراه في المنارما كولو مي

تحت عنوان باللغة الإنجليزية:

Comparative study of the analgesic, anti-pyretic and anti-inflammatory activities of Extra virgin olive oil and Ibuprofen and their combination in different animal models in albino mice

باللغة العربية:

دراسة مقارنة لتقييم فعالية زيت الزيتون البكر الممتاز كمسكن للالم و خافض للحرارة و مضاد للالتهاب مقارنة بالايبوبروفين منفصلين و معا على نماذج تجريبية مختلفة مستحدثه في الفنران البيضاء

بناء على موافقة الجامعة بتاريخ ١٣ / ٧ / ٢٠١٦ تم تشكيل لجنة الفحص والمناقشة للرسالة المذكورة أعلاه على النحو التالي :-

المدرال محمور الرح الساد الفاره كو حالاهم ما الفاره في المشرفين عن المشرفين عن المشرفين عن المشرفين عن المشرفين عن الماز محمد كالمنافع معتمد داخلي المدر الماز محمد كالمنافع معتمد خارجي عن الماز محمد الماز محمد الماز الفاره كولوها المار ما العامم عن المشرفين عدد فحص الرسالة بواسطة كل عضو منفردا وكتابة تقارير منفردة لكل منهم انعقدت اللجنة مجتمعة في يوم الاحد بتاريخ ٥ / ٦ / ٢٠١٦ بقسم الفاره كولوها موضوع الرسالة والنتائج التي بكلية الطب - جامعة القاهرة وذلك لمناقشة الطالب في جلسة علنية في موضوع الرسالة والنتائج التي توصل إليها وكذلك الأسس العلمية التي قام عليها البحث ،

اللجنة: مُبكُ الرالة

توقيعات أعضاء اللجنة:-المشرف الممتحن

Dissio x

الممتحن الخارجي بعرب البار محر

الممتحن الداخلي ماحب مُ رُكر

Comparative Study of the Analgesic, Anti-Pyretic and Anti-Inflammatory Activities of Extra Virgin Olive Oil and Ibuprofen and Their Combination in Different Animal Models in Albino Mice

Thesis

Submitted for Partial Fulfilment of the M.D. Degree in **Medical Pharmacology**

By Wallaa Abdelfattah Osman

M.B.B.Ch.; M.Sc. (Medical Pharmacology)
Assistant lecturer of Medical Pharmacology.
Faculty of Medicine, Cairo University

Supervisors

Prof. Dr. Elsayed Mahmoud Elrokh

Professor of Medical Pharmacology Faculty of Medicine, Cairo University

Prof. Dr. Mona Osman Abdel- Halim

Professor of Medical Pharmacology Faculty of Medicine, Cairo University

$\mathcal{D}r$. Dina Ahmed Aly Labib

Lecturer of Pharmacology Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2016

CONTENTS

Acknowledgement	
Abstract	
List of Abbreviations	
List of Tables	
List of Figures	
List of photos	
INTRODUCTION	
AIM OF THE WORK	
REVIEW OF LITERATURE:	
Chapter I: Inflammation	
• Definition	
Cardinal signs of inflammation	
Etiology of inflammation	
Mechanism of inflammation	
Inflammatory mediators	
Chapter II: NSAIDs	
• Ibuprofen	
Chapter III: Extra virgin olive oil	
History of olive tree and olive oil	
Processing of olive oil	
Classification and grading of olive oil	
Chemical composition of olive oil	
Inflammatory pathways relevant to extra virgin olive oil	
Beneficial effects of extra virgin olive oil in different human diseases	• • •
MATERIAL AND METHODS	
RESULTS	.
DISCUSSION	
SUMMARY AND CONCLUSION	.
REFERENCES	
ARABIC SUMMARY	

Acknowledgement

Before all I would like to express my deepest thanks to ALLAH. Without his great blessings, I would never have accomplished this work.

I wish to express my deep appreciation and gratitude to Dr. Elsayed Mahmoud Elrokh, Professor of Medical Pharmacology, Faculty of Medicine, Cairo University, for his parental support and constructive advice throughout the work.

I would like to express my great and deep gratitude and loyalty to Dr. Mona Osman Abdel-Halim, Professor of Medical Pharmacology, Faculty of Medicine, Cairo University, for her sincere effort and unlimited support until this work was fulfilled.

I am very grateful to **Dr. Dina Ahmed Aly Labib**, Lecturer of Medical Pharmacology, Faculty of Medicine, Cairo University for her great effort and support to me all through this work.

My deep appreciation to all the staff members of Medical Pharmacology department in Faculty of Medicine, Cairo University. Finally many thanks to my family.

Wallaa Osman.

ABSTRACT

Background: Inflammation is a complex series of physiological events designed to repair the damaged tissue caused by injury or infection. It is involved in the development of many diseases. Cardinal signs of inflammation as pain and fever are commonly treated with NSAIDs which have many adverse effects. Recently, there is a new trend towards the natural dietary anti-inflammatory agents which have potential therapeutic effects with less adverse events. Extra virgin olive oil (EVOO) has been documented nowadays to have diverse beneficial effects on human beings. Oleocanthal is a phenolic compound in olive oil which was proved to have similarity with ibuprofen (IBU).

Aim of the work: This work was designed to compare the analgesic, antipyretic and antiinflammatory effects of EVOO with IBU and their combinations on different animal models in mice.

Methods: 140 adult healthy male Swiss albino mice were used in this study. The analgesic effect was assessed using acetic acid-induced writhing test. The antipyretic effect was evaluated by brewer's yeast induced pyrexia and the anti-inflammatory activity was investigated by two models; the carrageenan-induced paw edema and the carrageenan induced peritonitis in which the levels of total leucocytic count, neutrophil count, INF-y and PGE2 were measured in the peritoneal exudate. Animals were allocated into groups as follows: The disease models groups that represent the positive control (group 1). They were injected with acetic acid intra- peritoneally in the writhing test (model for nociception), with brewer's yeast subcutaneously (model for pyrexia), and with carrageenan either intra plantar in the right hind paw of the mice or intra peritoneally in the carrageenan-induced paw edema test and carrageenan-induced peritonitis in mice, respectively. The other groups represent the treated groups which received drugs in a fixed regimen in all the four tests as follows: a single oral dose of IBU at its therapeutic dose (100mg/kg) in group 2 which represents the standard treatment, EVOO (8ml/kg) in group 3, the combination of EVOO (8ml/kg) with the therapeutic dose of IBU (100mg/kg) in group 4 and the combination of EVOO (8ml/kg) with a low dose of IBU (40mg/kg) in group 5. In the last two tests, group 0 was added which includes normal untreated animals (negative control) group.

Result: The results revealed that the group treated with the combination of EVOO with the therapeutic dose of IBU 100mg/kg showed the highest percentage of inhibition in acetic acid-induced writhing test and in carrageenan-induced paw edema and the lowest rectal temperature in the brewer's yeast induced pyrexia, followed by that using the standard treatment IBU (100mg/kg) separately. Meanwhile, using EVOO alone or in combination with the low dose of IBU (40mg/kg) showed significant results from the disease model (positive control) but their effects were less than the group treated with the standard drug (IBU 100mg/kg). In the carrageenan induced peritonitis, the results revealed that using the combination of EVOO either with the therapeutic dose of IBU (100mg/kg) or with its low dose (40mg/kg) showed the best results in a dose dependent manner, while using olive oil alone decreased significantly most of the measured parameters and its effects was insignificant from the standard treatment IBU (100mg/kg).

Conclusion: Using EVOO in combination with the therapeutic dose of ibuprofen showed synergistic effect in controlling the cardinal signs of acute inflammation rather than using ibuprofen or EVOO individually.

Keywords: EVOO, Ibuprofen, Anti-inflammatory, Anti-pyretic, Analgesic.

LIST OF ABBREVIATIONS

AA : Arachidonic acid.

ANOVA : Analysis of variance.

ARE : Antioxidant responsive elements

B.C : Before Christ.b.w : Body weight.

cPGEs : Cytosolic prostaglandin E2 synthase.

COX : Cyclooxygenase enzyme.

DAG : Diacylglycerols.

DAMPs : Damage-associated molecular patterns.

DNA : Deoxyribonucleic Acid.

ELISA : Enzyme-linked immunoabsorbant assay.

EP : Prostaglandin E2 receptor.

FFA : Free fatty acid.

FMF : Familial Mediterranean Fever.

G1 phase : The first growth period of cell cycle.

HCAs : Heterocyclic amines.

HIF- 1α : Hypoxia-induced factor- 1α .

H2O2 : Hydrogen peroxide.

IBU : Ibuprofen.

ICAM-1 : Intercellular adhesion molecule-1.

IκB : Inhibitor of nuclear factor kappa B.

IκK : Inhibitor of kappa B kinase.

IL-1β : Interleukin-1beta.

IL-6 : Interleukin-6.

ILs : Interleukins.

INF-γ : Interferon gamma.

iNO : Inducible nitric oxide.

i.p : Intra peritoneal injection.

Keap1 : Kelch-like ECH-associating protein 1.

KOH : Potassium hydroxide.

LDL : Low density lipoprotein.

LOX : Lipooxygenase enzyme.

LPS : Lipopolysaccharide.

LRP1 : Lipoprotein receptor-related protein 1.

MAG : Monoacylglycerols.

MCP-1 : Monocyte Chemoattractant Protein-1.

MHC : Major histocompatibility complex.

MMP : Matrix Metalloproteinase.

mPGEs : Microsomal prostaglandin E2 synthases.

μM : Micro molar.μl : Micro liter.

MPO : Myloperoxidase enzyme.

MUFA : Monounsaturated fatty acid.

NaOH : Sodium hydroxide.

NF-κB : Nuclear factor-kappa B.

NK cell : Natural killer cell.

NO : Nitric oxide.

Nrf2 : Nuclear factor erythroid -related factor 2.

NSAIDs : Non-steroidal anti-inflammatory drugs.

O2⁻ : Superoxide anion.

O.D : Singlet oxygen.
O.D : Optical density.

Ops : Olive oil phenols.

PAMPs : Pathogen-associated molecular patterns.

PBS : Phosphate Buffered Saline.

PGs : Prostaglandins.

PGE2 : Prostaglandin E2.

PGEs : Prostaglandin E2 synthases.

Pg/ml : Picogram per milliliter.

PLA2 : Phospholipase A2.

PRRs : Pattern recognition receptors.

PUFA : Polyunsaturated fatty acid.

RNS : Reactive nitrogen species.

RONS : Reactive Oxygen/Nitrogen Species.

ROS : Reactive oxygen species.

RT : Rectal temperature.
SAT : Saturated fatty acid.

S.C : Subcutaneous.

SD : Standard deviation.

TAG : Triacylglycerols.

TBS : Tris-buffered saline.

TCR : T-cell receptor.

TLC : Total leucocytic count.

TMB : Tetramethylbenzidine.

TNF- α : Tumor necrosis factor –alpha.

VCAM-1 : Vascular cell adhesions molecule-1.

v/v : Volume to volume.

w/v : Weight to volume.

 λ : Lambda.

List of Tables

Table No.	Title	Page No.
1.	Analgesic effects of ibuprofen, EVOO and their combinations on acetic acid- induced writhing response in mice.	68
2.	Initial rectal temperatures of mice before brewer's yeast injection in different experimental groups.	72
3.	Rectal temperatures at 0 hour (+18 hrs after injection of brewer's yeast) in different experimental groups.	73
4.	Rectal temperatures at the 1 st hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	74
5.	Rectal temperatures at the 2 nd hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	75
6.	Rectal temperatures at the 3 rd hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	76
7.	Rectal temperatures at the 4 th hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	77
8.	Antipyretic effects of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	78
9.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by carrageenan in mice at (0 hour).	80
10.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by carrageenan in mice at the 1 st hour.	81
11.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by carrageenan in mice at the 2 nd hour.	82

Table No.	Title	Page No.
12.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by carrageenan in mice at the 3 rd hour.	84
13.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by carrageenan in mice at the 4 th hour.	85
14.	Anti-inflammatory effects of ibuprofen, EVOO and their combinations on hind paw edema induced by λ carrageenan in mice.	86
15.	Effects of ibuprofen, EVOO and their combinations on total leukocyte counts in peritoneal exudate in carrageenan-induced peritonitis in mice.	89
16.	Effects of ibuprofen, EVOO and their combinations on neutrophil migration in peritoneal exudate in carrageenan-induced peritonitis in mice.	92
17.	Effects of ibuprofen, EVOO and their combinations on total leukocyte counts and neutrophil migration in peritoneal exudate in carrageenan-induced-peritonitis in mice.	94
18.	Effects of ibuprofen, EVOO and their combinations on INF-γ level in the peritoneal exudate in carrageenan-induced peritonitis in mice.	96
19.	Effects of ibuprofen, EVOO and their combinations on PGE2 level in the peritoneal exudate in carrageenan-induced peritonitis in mice.	99

List of Figures

Fig.	Title	Page No.
1.	The cascade of acute inflammation.	9
2.	Types and source of inflammatory mediators.	13
3.	The chemical structures of the anti-inflammatory drug (Ibuprofen).	15
4.	Arachidonic acid metabolites and inflammation.	17
5.	The limits of free fatty acid concentration as oleic acid percent established by the IOOC for each olive oil category.	22
6.	Structure of the olive fruit.	24
7.	Structure of the triglyceride molecule.	25
8.	Structure of saturated, mono and poly unsaturated fatty acids.	27
9.	The main fatty acids found in the major component of olive oil and their percentage.	27
10.	Fractionation of the major and minor components in olive oil and their sub-constituents.	32
11.	Oleocanthal and ibuprofen inhibit both COX 1 and COX 2 enzymes and therefore block prostaglandin synthesis.	34
12.	NF-KB activation pathway.	34
13.	Percentage of the different types of fatty acids present in the different oils and fats.	36
14.	Regulation of oxidative stress and inflammation along with modulation of NF-Kb and NrF2 by nitrated oleic acid.	40
15.	The antibacterial action of olive oil.	43
16.	Different beneficial effects of olive oil in human body.	48
17.	Analgesic effects of ibuprofen, EVOO and their combinations on acetic acid-induced writhing response in mice.	69
18.	Percentages of inhibition of acetic acid-induced writhing response in mice treated with ibuprofen, EVOO and their combinations in relation to the positive control (group 1).	69

Fig. No.	Title	Page No.
19.	Initial rectal temperatures of mice before brewer's yeast injection in different experimental groups.	72
20.	Rectal temperatures at 0 hour (+18 hrs after injection of brewer's yeast) in different experimental groups.	73
21.	Rectal temperatures at the 1 st hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	74
22.	Rectal temperatures at the 2 nd hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	75
23.	Rectal temperatures at the 3 rd hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	76
24.	Rectal temperatures at the 4 th hour after oral administration of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	77
25.	Comparison of the anti-pyretic effects of ibuprofen, EVOO and their combinations in brewer's yeast-induced pyrexia in mice.	79
26.	Comparison of the anti-inflammatory effects of ibuprofen, EVOO and their combinations in hind paw edema induced by λ carrageenan in mice.	87
27.	Effects of ibuprofen, EVOO and their combinations on total leukocyte counts in peritoneal exudate in carrageenan-induced peritonitis in mice.	90
28.	Percentages of inhibition of total leukocyte counts in peritoneal exudate in carrageenan-induced peritonitis in mice treated with ibuprofen, EVOO and their combinations in relation to the positive control (group 1).	90
29.	Effects of ibuprofen, EVOO and their combinations on neutrophil migration in peritoneal exudate in carrageenan-induced peritonitis in mice.	93
30.	Percentages of inhibition of neutrophil migration in peritoneal exudate in carrageenan-induced peritonitis in mice treated with ibuprofen, EVOO and their combinations in relation to the positive control (group 1).	93
31.	Effects of ibuprofen, EVOO and their combinations on INF-γ level in the peritoneal exudates in carrageenan-induced peritonitis in mice.	97

Fig. No.	Title	Page No.
32.	Percentages inhibition of INF-γ level in the peritoneal exudate in carrageenan induced peritonitis in mice treated with ibuprofen, EVOO and their combinations in relation to the positive control (group 1).	97
33.	Effects of ibuprofen, EVOO and their combinations on PGE2 level in the peritoneal exudates in carrageenan-induced peritonitis in mice.	99
34.	Percentages of inhibition of PGE2 level in the peritoneal exudate in carrageenan- induced peritonitis in mice treated with ibuprofen, EVOO and their combinations in relation to the positive control (group 1).	100

List of Photos

photo No.	Title	Page No.
1.	Digital plethysmometer.	50
2.	Injection of acetic acid intra peritoneally in the mouse.	53
3.	Measuring the rectal temperature by digital thermostat probe.	55
4.	Carrageenan injection into the right hind paw of the mouse and assessment of the paw swelling using digital plethysmometer.	56
5.	The technique used to collect the peritoneal fluid.	58

