New Agents in Treatment of Psoriatic Arthritis

Essay

Submitted in Partial Fulfillment of Master Degree in Physical Medicine, Rheumatology and Rehabilitation

By

Marwa Mahmoud Ahmed Abd El-Latif

M.B.B. Ch – Faculty of Medicine Tanta University

Supervised by

Prof. Dr. Azza Kamal El-Gogary

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University


Prof. Dr. Heba Fawzy El-Shishtawy

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University

Dr. Dina Abou Bakr Farrag

Lecturer in Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First and foremost, thanks to **Allah** for guiding me to accomplish this work.

I would first like to express my unlimited gratitude and thankfulness to **Prof. Dr. Azza Kamal El-Gogary,** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her acceptance to supervise my work and for her continuous support. It is a great honor to work under her guidance and supervision.

Also, I would like to express my sincere and deep gratitude to **Prof. Dr. Heba Fawzy El-Shishtawy**, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her help, cooperation, valuable suggestions, encouragement and for dedicating much of her precious time to accomplish this work.

I owe my deepest appreciation to **Dr. Dina Abou Bakr Farrag,** Lecturer in Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her great effort, assistance, meticulous advice, encouragement and kind care.

Candidate

Marwa Mahmoud Ahmed Abdellatif

My great thanks to all the staff members of Physical medicine, Rheumatology & Rehabilitation, Faculty of Medicine, Ain Shams University, for their help.

Furthermore; I would like to convey my special thanks to soul of My Father, and my sincere thanks and appreciation to my mother for constant support.

Marwa Mahmoud Ahmed Abdellatif

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Abstract	ix
Introduction	1
Aim of the Work	9
Chapter (I): Pathogenesis and diagnosis of Psoriatic Arthritis	10
Chapter (II): Management of Psoriatic Arthritis	83
Summary and Conclusion	178
Recommendations	189
References	190
Arabic Summary	

List of Abbreviations

Abbr. Full-term ADCC : Antibody-dependent cell cytotoxicity. anti-TNF : Antitumor necrosis factor. AP-1 : Activator protein 1. **APC** : Antigen-presenting cells. **AZA** : Azathioprine. **bDMARD** : Biological DMARD. C/EBP : CCAAT-enhancer-binding protein. CARD15 : Caspase recruitment domain-containing protein 15. **CASPAR** : Classification Criteria of Psoriatic Arthritis. **CBC** : Complete blood count. CIA : Collagen-induced arthritis. Cmax : Maximum serum concentration. CQ : Chloroquine. **CREB** : CAMP-responsive element binding protein. **CRP** : C-Reactive Protein. csDMARDs : Conventional synthetic DMARD. CT : Computed tomography. CTLA-4 : Cytotoxic T-Lymphocyte Antigen 4. **DCs** : Dendritic cells. : Distal interphalangeal. DIP DKK-1 : Dickkopf-1. **DMARDs** : Disease Modifying Anti Rheumatic Drugs. **EDEM** : ER degradation-enhancing α-mannosidase-like protein. **EOW** : Every other week. ER : Endoplasmic Reticulum. **ERAD** : Endoplasmic reticulum-associated degradation. **ESR** : Erythrocyte Sedimentation Rate. **EULAR** : The European League against Rheumatism. : Food and Drug Administration. **FDA**

Grp78 : Glucose Regulate Protein 78.
GST : Gold sodium thiomalate.

H₂O₂ : Hydrogen peroxide.HCQ : Hydroxychloroquine.

HIV: Human Immunodeficiency Virus.

HLA : Human leukocyte antigens.IBD : Inflammatory bowel disease.

IFNγ : Interferon gamma.IgG1 : Immunoglobulin G₁.

IL: Interleukin.

ISR : Integrated Stress Response.

ΙκΒα : Inhibitory subunit of nuclear factor kappa B

alpha.

JaK : Janus kinases.

JAK : Janus Kinase Inhibitor.

KIR : Killer-cell immunoglobulin like receptor.

KIR3DL2 : Killer cell immunoglobulin-like receptor 3DL2.

LCE : Late Cornified Envelope.

LFA-3 : Lymphocyte function—associated antigen 3.

mAb : Monoclonal antibody.MCP : Metacarpophalangeal.MDA : Minimal disease activity.

MHC : Major histocompatibility complex.MRI : Magnetic Resonance Imaging.

MTX : Methotrexate.

NF-κB : Nuclear factor of kappa-light-chain-enhancer of

activated B cells.

NKNKGNatural Killer cells.Natural Killer Group.

NSAIDs : Non-steroidal anti-inflammatory drugs.

OMERACT: Outcome Measures in Rheumatology Clinical

Trials.

OPG : Osteoprotegerin.
PDE : Phosphodiesterase.

PDE4 : Phosphodiesterase Four Inhibitor.

PDI : Protein disulfide isomerase.

PIP : Proximal interphalangeal.

PS: Psoriasis.

PsA : Psoriatic arthritis.

PSORS1 : Psoriasis susceptibility gene 1.

RA : Rheumatoid Arthritis.

RANKL : Receptor activator of nuclear factor-κB.

RANKL : Receptor activator of nuclear factor kappa-B

ligand.

ROS : Reactive oxygen species.

rs : The ringelschwantz.

SEFIR : Similar expression to fibroblast growth factor

genes and IL-17R.

SH2 : Src homology 2 domain.

SLE : Systemic lupus erythematosus.

SOM : Somatostatin.

SOMR : Somatostatin receptor.

SP : Substance P.

SpA : Spondyloarthropathy.

STAT : Signal transducer and activator of transcription.

TB : Tuberculosis.

TBK1 : TANK binding kinase 1.

TCR : T-cell receptor.

Th: T helper.

TICOPA
TNAIP3
TNF α-induced protein 3.
TNF
Tumor Necrosis Factor.

TNFAIPI : TNFAIP3-interacting protein 1. **TNFi** : Tumour necrosis factor inhibitor.

TRAF: Tumor necrosis factor receptor-associated factor.

TRAP : T-cell receptor activating protein. **tsDMARD** : Targeted synthetic DMARD.

UGGT : UDP-glucose: glycoprotein glucosyltransferase.

UPR : Unfolded Protein Response.

US : Ultrasonic.

 $\lambda_{\rm S}$: The recurrence risk.

List of Tables

Cable No. Citle Page No.

Table (1): The CASPAR classification criteria for PsA 70

List of Figures

Figure No	. Title Page N	lo.
Figure (1):	Photographs of patients with psoriasis	11
Figure (2):	Photographs of patients with nail psoriasis1	12
Figure (3):	Representation of the complex relationship between HLA susceptibility and psoriatic arthritis.	17
Figure (4):	Key signaling pathways in joints that contribute to the pathogenesis of psoriasis, and, by analogy, PsA	23
Figure (5):	Key signaling pathways in dermis that are affected by genetic variants that contribute to the pathogenesis of psoriasis, and, by analogy, PsA	24
Figure (6):	Protein folding and malfolding	27
Figure (7):	ER stress-mediated cell death	31
Figure (8):	Joint pathology in psoriatic arthritis	35
Figure (9):	IL-23, IL-17 and RANK receptor signaling	40
Figure (10):	The IL-23–IL-17 immune pathway in RA, SpA and PsA in relation to autoimmune-like or autoinflammatory pathogenesis	44
Figure (11):	The role and interaction of IL-23/T _H 17 cytokines in relation to tissue inflammation, autoantibody production and bone erosion in the pathogenesis of autoimmune arthritis	45
Figure (12):	Schematic overview of the role of the IL-23–IL-17 immune pathway in joint inflammation, skin inflammation and enthesis.	46

Figure (13):	Cellular and Cytokine interactions in Psoriatic Synovium
Figure (14):	WNT pathway 57
Figure (15):	Roles of Wnt signaling in bone remodeling 60
Figure (16):	Osteoclast pathway in psoriatic Arthrits 62
Figure (17):	Features of Psriatic Arthritis
Figure (18):	Bone remodling
Figure (19):	Immunopathogenesis of psoriatic arthritis 64
Figure (20):	Psoriatic arthritis showing nail changes, distal interphalangeal joint swelling, and sausage digits.
Figure (21):	Psoriatic arthritis involving distal phalangeal joint
Figure (22): S	welling and deformity of the metacarpophalangeal and distal interphalangeal joints in a patient with psoriatic arthritis
Figure (23):	Severe psoriatic arthritis showing involvement of the distal interphalangeal joints, distal flexion deformity, and telescoping of the left third, fourth, and fifth digits due to destruction of joint tissue
Figure (24):	Psoriatic Arthritis: Dactylitis, Synovitis, and Swan-Neck deformity
Figure (25):	Anatomy of the Enthesis
Figure (26):	Arthritis mutilans (ie, "pencil-in-cup" deformities)
Figure (27):	Psoriatic arthritis involving the distal phalangeal joint

Figure (28):	Comparison between sites of involvements in both hands and feet in psoriatic arthritis and rheumatoid arthritis
Figure (29):	Poster anterior radiograph of the hands shows wrist fusion
Figure (30):	Foot radiograph
Figure (31):	Lateral radiograph of the cervical spine shows syndesmophytes at the C2-3 and C6-7 levels, with zygapophyseal joint fusion
Figure (32):	Anteroposterior radiograph of the abdomen shows fusion of the sacroiliac joints
Figure (33):	Polyarticular PsA X-rays 79
Figure (34):	Photographs of patients with psoriatic arthritis
Figure (35):	Algorithm for management pf PsA 85
Figure (36):	The EULAR 2015 algorithm for treatment of PsA with pharmacological non-topical treatments
Figure (37):	Mechanism of action of Methotrexate98
Figure (38):	Structure of biological drugs (anti- TNF therapy)
Figure (39):	Mechanism of action of biologic drugs 115
Figure (40):	Interactions between antigen-presenting cells (such as dendritic cells) and T cells have a key role in the pathogenesis of psoriasis
Figure (41):	Structure of Infliximab
Figure (42):	Mechanism of action of Infliximab 118
Figure (43):	Structure of Etanercept
Figure (44):	Mode of action of Etanercept 121

Figure (45):	Complex mechanisms of anti-TNF drugs in inflammatory bowel disease (IBD)	122
Figure (46):	Adalimumab structure in comparison with other TNF antagonists	125
Figure (47):	IL-17 inhibitors in development for PsA	129
Figure (48):	Targeting the Th17 pathway in psoriasis	130
Figure (49):	Secukinumab prevents IL-17A binding to its receptor, inhibiting production of proinflammatory mediators, <i>IFN</i> interferon, <i>IL</i> interleukin.	132
Figure (50):	T-cell activation requires two signals. APC, antigen-presenting cell	137
Figure (51):	Belatacept binds with high affinity to CD86 and CD80 and prevents T-cell activation	138
Figure (52):	Mechanisms of action of rituximab	140
Figure (53):	Chemical structure of apremilast	142
Figure (54):	The mechanism of action of tofacitinib. JAK: Janus family kinase	148
Figure (55):	Binding of cytokines to the receptor in turn activates an intracellular signaling cascade via JAKs with subsequent phosphorylation of STATs.	149
Figure (56):	A- Postoperative radiograph after THA	169

ABSTRACT

Background: psoriatic arthritis is a long term inflammatory arthritis. Psoriatic arthritis is leading to bone erosion, joint destruction and associated with nail diseases, dactylitis, enthesitis, sponnylitis and uveitis.

Aim of this study was to review the new lines of treatment for psoriatic arthritis with or without skin affection. **Treatment**, the underlying process in psoriatic arthritis is inflammation; so, treatments are directed to reduce and control inflammation. Although no clear correlation exists between joint inflammation and the skin in every patient, the skin and joint aspects of the disease often must be treated simultaneously. However, only certain therapies are effective for psoriasis and psoriatic arthritis. Systemic agents, can be used for both skin and joint manifestations, it includes methotrexate and ciclosporin. For the biologic agents, the tumour necrosis factor inhibitors such as adalimumab, etanercept, infliximab, golimumab and certolizumab are effective. Ustekinumab is a recently agent belonging to the group of anti-IL-12p40 antibodies and has been shown to be efficacious. Newer drugs in the treatment which have shown efficacy for both psoriasis and psoriatic arthritis consist of the anti-IL-17 agent, secukinumab, and a phosphodiesterase-4 inhibitor, apremilast. As well as the oral JaK inhibitor, tofacitinib, have very limited but promising data.

Keywords: psoriasis, psoriatic arthritis, anti- TNF, anti-IL-17, small molecules inhibitors.

Introduction

Soriasis is a chronic immune-mediated inflammatory disorder characterized by uncontrolled proliferation of keratinocytes, activated dendritic cells, release of proinflammatory cytokines, and recruitment of T-cells to the skin (*Harrington et al.*, 2017).

Psoriasis is a multisystemic disease which affects 2–3 % of the population. It usually presents with skin and joint manifestations. The proportion of patients of psoriasis who develops psoriatic arthritis (PsA) ranges from 6 to 42 % in different studies (*Choi et al., 2017*).

Psoriasis usually presents 8–10 years before PsA, although some patients present with PsA sine psoriasis. Both of them are immune-mediated chronic inflammatory diseases with a similar pathogenesis, concurrent treatment should be undertaken to minimize side effects and financial burden of medications (*Springate et al.*, 2017).

The peak of PsA incidence occurs between 30 and 50 years of age. It is characterized clinically by edema, pain, tenderness, and stiffness of the joints, ligaments and tendons (dactylitis and enthesitis) (*Ajesh and Vinod*, 2017).

Both the innate and adaptive immune systems are involved in the pathogenesis of psoriasis and PsA. T cell