

### STUDY OF RELATION BETWEEN LONG TERM METFORMIN TREATMENT AND VITAMIN B<sub>12</sub> DEFICIENCYIN TYPE 2 DIABETIC PATIENTS

#### Thesis

Submitted for Partial Fulfillment of Master Degree In Endocrinology

By

Mai Mohamed Abass Tolba M.B.B.CH Ain Shams University

Supervised by

#### Prof. Dr. Hanan Mohammed Amer

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

### Prof. Dr. Rania Sayed Abd Elbaki

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain shams University

#### Dr. Merhan Sami Nasr

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2017

### Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Ibanan Mohammed Amer**, Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Rania Sayed**Abd Elbaki, Professor of Internal Medicine and

Endocrinology Faculty of Medicine - Ain shams University for
her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Merhan Sami Masr**, Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain shams University for her great help, outstanding support, active participation and guidance.

Mai Mohamed Abass Tolba

# List of Contents

| Title                 | Page No. |
|-----------------------|----------|
| List of Tables        |          |
| List of Figures       | 5        |
| List of Abbreviations | 6        |
| Introduction          | 1        |
| Aim of the Work       | 12       |
| Review of Literature  |          |
| Subjects and Methods  | 110      |
| Results               | 127      |
| Discussion            | 142      |
| Summary               | 152      |
| Conclusion            | 157      |
| Recommendations       | 158      |
| References            | 159      |
| Appendix              | 203      |
| Arabic summary        |          |

## List of Tables

| Table No.         | Title                                                    | Page No.             |
|-------------------|----------------------------------------------------------|----------------------|
| <b>Table</b> (1): | Clinical and molecular c                                 |                      |
| <b>Table (2):</b> | Diabetes can be classified categories                    | 2 2                  |
| <b>Table (3):</b> | Diagnostic criteria for di<br>hyperglycaemic hyperosmola |                      |
| <b>Table (4):</b> | ACR: Albumin to creatinine                               | ratio 34             |
| <b>Table (5):</b> | Recommended targets for gl                               | ycaemic control 42   |
| <b>Table (6):</b> | Metformin Dose adjustment                                | according to eGFR 63 |
| <b>Table (7):</b> | Summary of drug intermetformin therapy                   |                      |

## List of Figures

| Fig. No.            | Title Page No.                                                                                                                    |     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure (1):         | Amino Acid Metabolism                                                                                                             | 24  |
| Figure (2):         | Criteria type 2 diabetes diagnosis                                                                                                | 26  |
| Figure (3):         | Protocol for management of adult patients with diabetic ketoacidosis and hyperglycaemic hyperosmolar state recommended by the ADA |     |
| Figure (4):         | Neurovascular hypothesis for the pathogenesis of diabetic retinopathy                                                             | 36  |
| <b>Figure (5):</b>  | Mechanism of action of SGLT2                                                                                                      | 50  |
| <b>Figure (6):</b>  | Pharmacodynamic of metformin                                                                                                      | 59  |
| <b>Figure (7):</b>  | Pharmacokinetics of metformin                                                                                                     | 61  |
| <b>Figure (8):</b>  | Anti-hyperglycaemic action of metformin on the liver cell.                                                                        | 65  |
| Figure (9):         | The role of AMPK in mediating metformin action                                                                                    | 70  |
| <b>Figure (10):</b> | Metformin improves insulin signaling in the liver                                                                                 | 75  |
| <b>Figure (11):</b> | Proposed mechanisms of metformin effects on cancer                                                                                | 78  |
| <b>Figure (12):</b> | Vitamin B <sub>12</sub> Deficiency                                                                                                | 88  |
| <b>Figure (13):</b> | The Normal Mechanisms and Defects of Absorption of Vitamin B12                                                                    | 94  |
| <b>Figure (14):</b> | Sites of vitamin B12 absorption and causes of deficiency                                                                          | 97  |
| <b>Figure (15):</b> | Metabolism of vitamin B12                                                                                                         | 98  |
| <b>Figure (16):</b> | Clinical features of vitamin B12 deficiency                                                                                       | 99  |
| <b>Figure (17):</b> | The diagnostic algorithm can be used to interpret the results of the CBC and haematinic tests                                     | 103 |

## List of Abbreviations

### Abb. Full term

| μg      | Microgram                                |
|---------|------------------------------------------|
|         | The American Association of Clinical     |
|         | Endocrinologists                         |
| AAs     | EndocrinologistsAmino acids              |
| ABCC8   | ATP-binding cassette, subfamily C        |
| ACE     | The American College of Endocrinology    |
|         | Albumin to creatinine ratio              |
|         | American Diabetes Association 1          |
| ALT     | Alanine Amino Transferase                |
| AMA     | Antimitochondrial antibodies             |
| AMPK    | Adenosine monophosphate activated        |
|         | protein kinase                           |
| AST     | Aspartate Amino Transferase              |
| B cells | •                                        |
| BCAAs   | Branched-chain amino acids               |
| BLK     | B-lymphocyte kinase                      |
|         | Body Mass Index                          |
|         | Complete Blood Count                     |
|         | Carboxyl ester lipase                    |
|         | contrast media-induced nephrotoxicity    |
|         | Computed tomography                      |
|         | Diabetes Control and Complications Trial |
|         | Diabetic ketoacidosis                    |
|         | Diabetes mellitus                        |
|         | Diabetic nephropathy                     |
|         | Dipeptidyl peptidase IV inhibitors       |
|         | Diabetic retinopathy                     |
|         | European Association for the Study of    |
|         | Diabetes                                 |
| eGFR    | Estimated glomerular filtration rate     |
|         | Enzyme immunoassay                       |
|         | Enzyme Linked Immuno Sorbant Assay       |

## List of Abbreviations cont...

| Abb.      | Full term                                 |
|-----------|-------------------------------------------|
| ETDRS     | Early Treatment of Diabetes Retinopathy   |
|           | Study                                     |
| FBG       | Fasting blood glucose                     |
| Fig       |                                           |
| GCK       |                                           |
|           | Gamma-glutamyltranspeptidase              |
| GIP       | Glucose-dependent insulinotropic          |
|           | polypeptide                               |
| GLP-1     | Glucagon-Like Peptide -1                  |
| Glut4     | Glucose transporter 4                     |
| HbA1c     | Hemoglobin A1c                            |
|           | Hyperglycaemic hyperosmolar state         |
| HNF4A     | Hepatocyte nuclear factor 4 α             |
| HT        |                                           |
| IF        |                                           |
|           | Impaired fasting glucose                  |
|           | Impaired glucose tolerance                |
| IL-1      |                                           |
| IL-6      |                                           |
| INS       |                                           |
|           | Insulin promoter factor 1                 |
|           | Insulin Resistance                        |
|           | Insulin receptor substrate proteins       |
| KCNJ 11   | Potassium channel, inwardly rectifying    |
| T7        | subfamily J, member 11                    |
| Kg        |                                           |
|           | Kruppel-like factor 11                    |
|           | Low-density lipoprotein                   |
|           | Lipoprotein lipase                        |
| m2        |                                           |
|           | Metformin-associated lactic acidosis      |
|           | Multidrug and toxin extrusion transporter |
|           | Multidrug and toxin extrusion protein 1   |
| WLA I E Z | Multidrug and toxin extrusion protein 2   |

## List of Abbreviations cont...

| Abb.    | Full term                                  |
|---------|--------------------------------------------|
| MetS    | Metabolic syndrome                         |
| Ml      |                                            |
|         | . Methylmalonic coenzyme A mutase          |
|         | . Maturity-onset diabetes of the young     |
|         | . Messenger Ribonucleic acid               |
|         | . Methyl synthase                          |
|         | . Mitochondrial DNA                        |
|         | . Mammalian target of rapamycin            |
|         | . Neurogenic differentiation 1             |
|         | .Nuclear factor kappa light chain enhancer |
|         | of activated                               |
| Ng      |                                            |
|         | .National Health and Nutrition             |
|         | Examination Survey                         |
| NIDDM   | . Non insulin dependent diabetes mellitus  |
|         | . Nonproliferative DR                      |
|         | . Negative predictive value                |
|         | .Oral antidiabetic agents                  |
|         | .Organic Cation Transporter 1              |
| OCT2    | Organic Cation Transporter 2               |
|         | Organic Cation Transporter 3               |
| p value | .A probability value                       |
| PAX4    | .Paired-box-containing gene                |
| PDR     | .Proliferative DR                          |
|         | .Pancreatic and duodenal homeobox 1        |
|         | .Protein kinase B                          |
| PMAT    | .Plasma membrane monoamine                 |
|         | transporter                                |
|         | .Permanent neonatal diabetes               |
|         | .2 hours post prandial blood glucose       |
|         | .Peroxisome Proliferator Activated Peptide |
|         | Positive predictive value                  |
|         | .Long arm of chromosome                    |
| R       | .Correlation coefficient                   |
|         |                                            |

## List of Abbreviations cont...

| Abb.   | Full term                              |
|--------|----------------------------------------|
|        |                                        |
| SCr    | Serum creatinine                       |
| SD     | Standard deviation                     |
| SGLT-2 | Selective sodium-glucose transporter-2 |
|        | Type 1 diabetes mellitus               |
| T2DM   | Type 2 diabetes mellitus               |
|        | Transcobalamin                         |
| TCF2   | Transcription factor 2                 |
|        | tumor necrosis factor alpha            |
|        | Thiazolidinediones                     |
|        | United Kingdom Prospective Diabetes    |
|        | Study                                  |
| WHO    | World Health Organization              |
| WT     |                                        |

### Introduction

Metformin is one of the most widely used oral hypoglycemic agents (*Mazokopakis and Starakis*, 2012).

Metformin treatment usually begins at the time of diagnosis of diabetes with lifestyle modification in the absence of contraindications (*Kos et al.*, 2012).

Long-term metformin treatment is a known pharmacological cause of vitamin B12 deficiency, as was evident within the first 10–12 years after it started to be used *(De Jager et al., 2010)*.

In addition, metformin treatment may be an iatrogenic cause for the exacerbation of peripheral neuropathy in patients with type 2diabetes who exhibit depressed vitamin B12 levels (Wile and Toth, 2010).

We previously reported a high prevalence of vitamin B12deficiency in patients with type 2 diabetes treated with metformin, particularly in subjects with a longer duration and higher daily dose of metformin use (Ko et al., 2014).

Although the clinical significance of vitamin B12 deficiency related to metformin treatment is debatable, monitoring for vitamin B12 has been recommended for patients with type 2 diabetes, especially those on long-term metformin treatment (*De Jager et al.*, 2010).

Clinically, vitamin B12 deficiency could lead to altered mental status, megaloblastic anemia, and neurological damage (*Bell*, 2010).

Unfortunately, diabetic neuropathy symptoms can overlap with paresthesias, impaired vibration sensation and propriocaption (*Pflipsen et al.*, 2009). Therefore, peripheral neuropathy due to vitamin B12 deficiency may be confused with diabetic peripheral neuropathy or may contribute to the aggravation of diabetic peripheral neuropathy (*Pierce et al.*, 2012).

The progression of neurologic damage due to vitamin B12 deficiency can be stopped by early detection and treatment with cobolamin supplementation (*Lindenbaum et al.*, 1988). However, if this occurrence is misdiagnosed as diabetic neuropathy, permanent neurological damage may occur (*Pierce et al.*, 2012).

### AIM OF THE WORK

The aim of this work is to Study the relation betweenlong term Metformin treatment and Vitamin B12 Deficiency in type 2 diabetic patients.

### Type 2 Diabetes Mellitus

#### Introduction

Type 2 diabetes mellitus consists of dysfunctions characterized by hyperglycemia and resulting from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Poorly controlled type 2 diabetes is associated with an array of microvascular and macrovascular complications (*ADA*, 2012).

Microvascular complications of diabetes include retinal, renal, and possibly neuropathic disease. Macrovascular complications include coronary artery and peripheral vascular disease. Diabetic neuropathy affects autonomic and peripheral nerves (*ADA*,2012).

Although type 2 diabetes mellitus typically affects individuals older than 40 years, it has been diagnosed in children as young as 2 years of age who have a family history of diabetes (*ADA*, *2015*).

#### **Etiology**

The etiology of type 2 diabetes mellitus appears to involve complex interactions between environmental and genetic factors. Presumably, the disease develops when a diabetogenic lifestyle (ie, excessive caloric intake, inadequate caloric expenditure, obesity) is superimposed on a susceptible genotype.

The body mass index (BMI) at which excess weight increases risk for diabetes varies with different racial groups. For example, compared with persons of European ancestary, persons of Asian ancestary are at increased risk for diabetes at lower levels of overweight (ADA, 2014).

In addition, an in utero environment resulting in low birth weight may predispose some individuals to develop type 2 diabetes mellitus (*Li et al.*, 2012). Infant weight velocity has a small, indirect effect on adult insulin resistance, and this is primarily mediated through its effect on BMI and waist circumference (*Slining et al.*, 2011).

About 90% of patients who develop type 2 diabetes mellitus are obese. However, a large, population-based, prospective study has shown that an energy-dense diet may

be a risk factor for the development of diabetes that is independent of baseline obesity (Wang et al., 2008).

Some studies suggest that environmental pollutants may play a role in the development and progression of type 2 diabetes mellitus. A structured and planned platform is needed to fully explore the diabetes-inducing potential of environmental pollutants (*Hectros et al.*, 2011).

Secondary diabetes may occur in patients taking glucocorticoids or when patients have conditions that antagonize the actions of insulin (e.g., Cushing syndrome, acromegaly, pheochromocytoma).

#### Major risk factors (ADA, 2016).

The major risk factors for type 2 diabetes mellitus are the following:

- Age greater than 45 years (though, as noted above, type
   2 diabetes mellitus is occurring with increasing frequency in young individuals).
- Weight greater than 120% of desirable body weight
- Family history of type 2 diabetes in a first-degree relative (e.g., parent or sibling).
- Hispanic, Native American, African American, Asian American, or Pacific Islander descent.