

Structural, Optical and Electrical Properties of Diluted Magnetic Semiconductors "Cd_{1-x}Mn_xSe" Films.

A Thesis Submitted To University Collage of Women For Arts, Science and Education - Ain Shams University

For The Ph.D Degree in (Physics)
By

TAREK MAHMOUD DAHY EL SAID
M.Sc. Physics

Supervising Committee

Prof. Dr. Massarat Bakr Seddik

Prof. of Solid State Physics
Physics Department
University Collage of Women for
Arts, Science and Education
Ain Shams University

Prof. Dr.
Abd El Hamid El
Said Eid

Prof. of Solid State Physics Electron Microscope and Thin Films Department. Physics Division National Research Center

2006

STRUCTURE, OPTICAL AND ELECTRICAL PROPERTIES OF DILUTED MAGNETIC SEMICONDUCTORS ${^{^{\circ}}Cd_{1-x}Mn_xSe''}$ FILMS.

THESIS SUBMITTED FOR THE PH.D DEGREE IN PHYSICS (SOLID STATE)

BY

TAREK MAHMOUD DAHY EL-SAID

SUPERVISOR COMMITTEE

Prof. Dr. Massarat Bakr Seddik

Prof. of Solid State Physics
Physics Department
University Collage of Women for
Arts, Science and Education
Ain Shams University

Prof. Dr.
Abd El Hamid El Said
Eid

Prof. of Solid State Physics Electron Microscope and Thin Films Department. Physics Division National Research Center

Date of Research: // 2006

Approval Stamp: Date of Approval: // 2006

Approval of Faculty Council. Approval of University Council.

NAME OF STUDENT : TAREK MAHMOUD DAHY

EL-SAID.

TITLE OF THESIS : STRUCTURE, OPTICAL AND

ELECTRICAL PROPERTIES OF

DILUTED MAGNETIC

 ${\tt SEMICONDUCTORS ``Cd_{1-x}Mn_xSe''}$

FILMS.

SCIENTIFIC DEGREE : DOCTOR OF PHILOSOPHY IN

PHYSICS (SOLID STATE).

DEPARTMENT : PHYSICS

NAME OF FACULTY : UNIVERSITY COLLAGE OF

WOMEN FOR ARTS, SCIENCE

AND EDUCATION.

UNIVERSITY : AIN SHAMS.

B.SC. GRADUATION DATE : 1990.

M.SC. GRADUATION DATE : 2001.

PH.D GRADUATION DATE : 2006.

CONTENTS

		Page
		No
	ACKNOWLEDGEMENTS	
	LIST OF FIGURES	i
	LIST OF TABLES	vii
	SYMBOLS AND NOMENCLATURE	ix
	ABSTRACT	XV
	KEYWORDS	xvi
	SUMMARY	xvii
	CHAPTER I GENERAL INTRODUCTION	1
1.1	Literature survy of CdSe	4
1.2	Literature survy of MnSe	16
1.3	Literature survy of CdMnSe	20
1.4	AIM OF THE WORK	35
	CHAPTER II EXPERIMENTAL TECHNIQUES	37
2.1	Preparation of the bulk ingot material	38
2.2	Preparation of Cd _(1-x) Mn _x Se thin films	39

2.3	Film thickness measurements	38
2.3.1	Quartz crystal thickness monitor	38
2.3.2	The multiple-beam Fizeau fringes	43
2.4	Structural characterization	46
2.4.1	X-ray diffraction	46
2.5	Differential thermal analysis	53
2.6	Transmission electron microscopy	55
2.7	Scanning electron microscopy	57
2.7.1	X-ray microanalysis	59
2.8	Optical properties	61
2.8.1	Spectrophotometric measurements	62
2.9	Electrical measurements	63
2.9.1	DC conductivity measurements	63
2.9.2	Dielectric and AC conductivity measurements	65
2.10	Magnatic properties	67
2.10.1	Principle of operation	68
2.10.2	Product factores	69
2.10.3	Specifications	69
	CHAPTER III STRUCTURAL CHARACTERIZATION OF THE PREPARED CD _(1-X) MN _X SE INGOT AND THERMALLY EVAPORATED FILMS	70

3.1	X-ray diffraction Analysis	70
3.1.1	Basic principle for analytical techniques: qualitative analysis	70
3.1.2	$Characterization \ of \ X-ray \ powder \ diffraction \ pattern \ of \\ Cd_{(1-x)}Mn_xSe$	73
3.2	Differential thermal analysis (DTA)	84
3.3	Structural chracterization of thermally evaporated $Cd_{(1-x)}Mn_xSe$ thin films	85
3.4	Transmission electron microscopy and X-ray microanalysis of $Cd_{(1-x)}Mn_xSe$ thin films	91
3.4.1	Scanning electron microscopy and X-ray microanalysis of $Cd_{(1-x)}Mn_xSe$ thin films	95
	CHAPTER IV OPTICAL PROPERTIES	104
4.1	Optical properties of thermally evaporated xMnxSe thin films	104
4.2	Determination the refractive index, n, and film thickness, t	109
4.3	Refractive index dispersion analysis	123
4.4	Absorption coefficient and optical band gap	136
	CHAPTER V ELECTRICAL AND MAGNETIC PROPERTIES	145
5.1	DC electrical properties of $Cd_{(1-x)}Mn_xSe$ thin films	145
5.2	AC conductivity and dielectric properties of Cd _(1-x) Mn _x Se thin films	157
5.2.1	Frequency and temperature dependence of AC	159

	conductivity	
5.2.2	Density of states	170
5.2.2	Frequency and temperature dependence of the dielectric constand ε and loss tangent, tan δ	172
5.3	Magnetic properties of Cd _(1-x) Mn _x Se powder	179
5.3.1	Magnetic hysteresis loops	180
	CONCLUSION	194
	REFERENCES	203
	ARARIC SUMMARY	218

LIST OF FIGURES

		Page No
Fig (2.1)	A photograph of the high vacuum coating unit	39
Fig (2.2)	A schamatic diagram of the crystal electrodes and housing for the quartz crystal monitor.	42
Fig (2.3)	A photograph of the quartz crystal thickness monitor (Type Model FTM4, Edwards Co.).	42
Fig (2.4)	Schematic diagram of the interferometer arrangement.	43
Fig (2.5)	Schematic diagram illusterating the method for preparing the specimen to measure the thickness of the deposited film.	44
Fig (2.6)	Schematic diagram of the multiple-beam interfermoetry	45
Fig (2.7)	Fringes produced by multiple-beam interferometry across a film-substrate	46
Fig (2.8)	Block diagram of a typical X-ray diffractometer	47
Fig (2.9)	Basic features of a typical XRD experiment	48
Fig (2-10a,b)	Several atomic planes and their d-spacing in a simple cubic (sc) crystal (a); and Miller indices of atomic planes in an sc crystal (b).	49
Fig (2.11)	Bragg-Brentano diffractometer, (a) and Seemann Bohlin diffractometer, (b) The point F is either the focal point on an X-ray tube or the focal point of a focusing monochromator.	52
Fig (2.12)	The specimen holder and connections in DTA.	54
Fig (2.13)	Illustrates the TEM configuration system.	55
Fig(2.14)	Schematic diagram of a scanning electron microscope	58

Fig (2-15 a,b)	Different interactions of an electron beam (EP) with sample. BSE = backscattered electron, SE = secondary electron, $X = x$ -ray, $AE =$ auger electron	60
Fig (2.16)	A photograph of the double beam spectrophotometer.	63
Fig (2-17a,b)	(a) schematic diagram of the set-up for measuring the film resistance, R and (b) Film on substrate	64
Fig (2.18)	A schematic diagram illustrating the electrical measuring circuit. a-thermocouple, B- evacuatted pyrex, C- DC power supply, E- electrometer, M-digital multimeter and S- coated substrate.	64
Fig (2.19)	Illustrate the $(Ag/Cd_{(1-x)}Mn_xSe/Ag)$ sandwich structure	48
Fig (2.20)	Photograph for the RLC bridge employing in the present work for dielectric and AC measurments.	67
Fig (2.21)	Vinrating Sample Magnetometer [Model 9600].	68
Fig (3.1)	Schematic representation of Bragg's Law.	72
Fig. (3.2)	The X-ray diffraction patterns of the prepared $Cd_{(1-x)}Mn_xSe$ in a fine powder form, $0.05 \le x \le 0.90$.	75
Fig (3.3a)	Shows the variation of the experimental d values for the some main diffraction planes.	81
Fig (3.3b)	Shows the diffraction intensity of the two main observed planes (100) and (110) respectively.	81
Fig (3.4)	Variation of the unit cell lattice parameters as a function of the composition, x .	82
Fig (3.5)	Spectral variation of the unit cell volume, V , and the density, ρ of the prepared ingot materials	84
Fig (3.6)	Shows the DTA curves for three representative samples.	85
Fig (3.7)	X-ray diffraction patterns for a typical representative as- deposited $Cd_{(1-x)}Mn_xSe$ films for $x = 0.05, 0.1, 0.5$ and 0.9, respectively.	87

Fig (3.8)	X-ray diffraction patterns of $Cd_{(1-x)}Mn_xSe$ thin films, 0.05 $\le x \le 0.90$, vacuum annealed at 423 K for 30 min.	88
Fig (3.9)	X-ray diffraction patterns of $Cd_{(1-x)}Mn_xSe$ thin films, 0.05 $\le x \le 0.90$, vacuum annealed at 453 K for 30 min.	89
Fig (3.10)	Variation of c_0 (thin films) as a function of the composition x .	91
Fig (3-11a-c)	Transmission electron micrographs and the electron diffraction patterns of as-deposited $Cd_{(1-x)}Mn_xSe$ films, (a) $x = 0.3$, (b) $x = 0.5$ and (c) $x = 0.9$ of film thickness 70, 106, 114 nm, respectively.	92
Fig (3-12a,b)	TEM micrographs and the electron diffraction patterns for a typical representative $Cd_{(1-x)}$ Mn _x Se films, (a) $x = 0.3$ and (b) $x = 0.5$ of film thickness 106, 114 nm, respectively, annealing temperature 423 K.	94
Fig (3.13)	TEM micrographs and the electron diffraction patterns for a typical representative $Cd_{(1-x)}$ Mn _x Se film, $x = 0.5$ of film thickness 114 nm, annealing temperature 453 K.	94
Fig (3.14)	Elemental analysis (EDX spectra) and the corresponding scanning electron microscopic photograph of $Cd_{(1-x)}Mn_xSe$ thin films deposited on a carbon stub.	98
Fig (4.1)	System of an absorbing thin film on a thick finite transparent substrate.	106
Fig (4-2 a ,b)	Transmission,T and reflection, R spectra of $Cd_{(1-x)}$ Mn_xSe thin films with $0.05 \le x \le 0.9$. T_{glass} represented the transmission spectra of uncoated glass substrate	108
Fig (4.3)	Transmission, T, reflection, R and back reflection, R_{back} of $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$. Curves T_M , T_m and T_α according to the text. The exact order, m is an interger for the tangent points of the lower envelope, and a half-interger for the tangent points of higher envelope	110
Fig(4.4)	Block diagram of the complete algorithm for calculating the film thickness, d and the refractive index, n of a thin uniform deposited film covering a thick finit transparent substratefrom its transmission spectrum.	115

Fig (4.5)	plot of n_F vesus $1/\lambda^2$ for $Cd_{(1-x)}Mn_xSe$ thin films, with $0.05 \le x \le 0.9$	119
Fig (4.6)	Spectral distribution of the refractive index, n, for $Cd_{(1-x)}Mn_xSe$ thin films with $0.05 \le x \le 0.9$, against wavelength, λ	122
Fig (4.7)	Plot of 1/2 aganist n/ λ for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$ to calculate the first order number, m and film thickness	123
Fig (4.8)	Plot of the factor $(n^2-1)^{-1}$ versus the photon energy squared, $(\hbar\omega)^2$ for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	127
Fig (4.9)	Composition dependence of the oscillator parameters, E_{o} and $E_{\text{d}}.$	128
Fig (4.10)	Composition dependence of the refractive index, $n_o(0)$. The solid line is linear fit	131
Fig (4.12)	Plot of the optical dielectric constant, ε_r versus λ^2 for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	119
Fig (3.13)	Plot of ln (-4 $\pi \chi_c$) versus ln λ for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$ in the NIR region	135
Fig (4.14)	Shows the composition dependence of high frequency dielectric constant, ϵ_{∞} and the free carriers susceptibility χ_c at λ = 2000, 2500 nm, respectively, for $Cd_{(1-x)}Mn_xSe$ thin films	136
Fig (4.15)	Semilogarithmic plot of the optical absorption coefficient spectra, α versus photon energy, for $Cd_{(1x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	137
Fig (4-16 a)	Plot of $(\alpha\hbar\omega)^2$ versus $(\hbar\omega)$ for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	139
Fig (4-16 b)	Plot of $(\alpha\hbar\omega)^{2/3}$ versus $(\hbar\omega)$ for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	140
Fig (4.17)	Composition dependence of both direct and forbidden direct band gaps of $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.9$.	141

Fig (4-18 a)	Graphical representation of the the volume energy loss-function.	143
Fig (4-18 b)	Graphical representation of the the surface energy loss-function	144
Fig (5.1)	Temperature dependence of film resistance during both heating and cooling cycles.	148
Fig (5.2)	Logarithmic plot of the film resistance, R_{RT} versus composition, x , before and after heating process.	150
Fig (5.3)	Temperature dependence of the electrical conductivity, σ_{dc} for different composition, x .	151
Fig (5-4 a, b)	Shows Log (σ_{dc}) versus $10^3/T$ for the investigated samples in the temperature ranges 300 - 375 K and 375 - 470 K, respectively.	153
Fig (5.5)	The activation energies, ΔE_1 , ΔE_2 versus composition, x	155
Fig (5.6)	Log (σ_{dc}) vesus $10^3/T$ during cooling process in the temperature range 300 - $470~K$.	156
Fig (5.7)	Shows the variation of the activation energy for cooling process versus composition, x	157
Fig (5.8)	depicts the frequency dependence of AC conductivity, σ_{ac} for all samples at different temperatures.	160
Fig (5.9)	Variation of room temperature electrical conductivity, $\sigma_{dc(300\text{K})}$ and electrical conductivity, σ_{ac} at different frequencies, versus composition, x .	164
Fig (5.10)	Log σ_{ac} versus $10^3/T$ for the investigated samples.	166
Fig (5.11)	Composition dependence of the exponent, μ at different temperature.	169
Fig (5.12)	Variation of the conductivity parameter A aganist temperature for different values of x .	170
Fig (5.13)	variation of $N(E_F)$ aganist composition, x	171

Fig (5.14)	Frequency dependence of the dielectric constant, ϵ , at different temperature for different samples	173
Fig (5.15)	Spectral behavior of loss tangent, $\tan \delta$ versus Log (ω) at different temperatures for the investigated samples.	175
Fig (5.16)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0.05$ at different temperatures.	181
Fig (5.17)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0.1$ at different temperatures.	184
Fig (5.18)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0.3$ at different temperatures.	185
Fig (5.19)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0.5$ at different temperatures.	186
Fig (5.20)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0.7$ at different temperatures.	187
Fig (5.21)	Magnetic hysteresis loops of $Cd_{1-x}Mn_xSe$ Powder for $x = 0$. at different temperatures.	188
Fig (5.22)	Corecive Force, H_c of $Cd_{1-x}Mn_xSe$ Powder for $0.05 \le x \le 0.9$ at various temperatures	192
Fig (5.23)	Composition dependence of the coercivity, H_c and intensity of [110] plane	193

LIST OF TABLES

Table(3.1)	The recorded of X-ray Powder diffraction data of $Cd_{(1-x)}Mn_xSe$; $0.05 \le x \le 0.90$.	Page No. 76
Table (3.2)	Standard data of CdSe and MnSe.	77
Table (3.3)	The check results of the experimental and calculated 2θ	79
Table (3.4)	values for the investigated samples. Values of lattic constants, a, c and the volume of the unit cell for different compositions.	83
Table (3.5)	The recorded d values of Cd _(1-x) Mn _x Se thin films annealed in vacuum at 423 and 453 K for 30 min, respectively. The notation * and ** refer to CdSe and MnSe planes, JCPDS-ICDD Card No: 8-459 and 26-1247 respectively.	90
Table (3.6)	Elemental analysis of $Cd_{(1-x)}Mn_xSe$ thin films deposited on a carbon stub.	97
Table (4-1a-f)	Illustrates the values of λ , T_M , T_m , n_i , d_i , m_o , m , n_F , and d_F calculated from the transmission spectra shown in Figure 4.5 a-f, using the envelope method for $Cd_{(1-x)}Mn_xSe$ thin films, $0.05 \le x \le 0.90$. The bold italic transmission values are those deduced from the envelope method.	116
Table (4.2)	Illustrate the results of the least-squares fit of n_F versus $1/\lambda^2$ for the investigated samples with its correlation coefficient.	120
Table (4.3)	Values of the single-oscillator energy, E_o , dispersion energy, E_d , refractive index, $n(0) = 1 + E_d / E_o$ at $\eta \omega \to 0$, optical band gap, $E_{gdirect}$, E_{gind} . High frequency dielectric constant, ε_{∞} , moments M_{-1} , M_{-3} , carrier concentration to the effective mass ratio, N/M^* and the electric free carrier susceptibility, χ_c for $Cd_{(1-x)}Mn_xSe$ thin films.	135
Table (4.4)	The estimated band gap values and $E_o \! / \! E_{g1} for Cd_{(x)} \! Mn_x Se$	143
	thin films, $0.05 \le x \le 0.9$.	

Table (5.1)	The room temperature electrical resistance of the deposited films befor and after heating process.	150
Table (5.2)	Electrical data of $Cd_{(1-x)}Mn_xSe$ with $0.05 \le x \le 0.9$ during heating cycle.	154
Table (5.3)	Electrical data of $Cd_{(1-x)}Mn_xSe$ with $0.05 \le x \le 0.9$ during cooling cycle.	157
Table (5.4)	Experimental and calculated values of the frequency exponent, μ , for the investigatesamples.	169
Table (5.5)	Density states with Mn concentration.	171
Table (5.6)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturation induction B_s for $x=0.05$ with differe temperatures.	182
Table (5.7)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturation induction B_s for $x = 0.1$ with different temperatures.	189
Table (5.8)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturation induction B_s for $x = 0.3$ with differe temperatures.	189
Table (5.9)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturatio induction B_s for $x = 0.5$ with different temperatures.	190
Table (5.10)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturation induction B_s for $x = 0.7$ with differ temperatures.	190
Table(5.11)	illustrates the values of coercive force, H_c , anisotropy Field, H_k , reminant induction, B_r , and saturation induction B_s for $x = 0.9$ with different temperatures.	191