

Ain shams University Faculty of Science Department of Chemistry

Novel nanocomposite polymeric membranes for solid phase microextraction of some insecticides and drugs of abuse

Thesis Submitted

By

Khalid Abo Bakr Mohammed Sayed

M.Sc. in Analytical chemistry, Faculty of Science, Cairo University

Forensic Chemist at Central Labs of Forensic Medicine Authority For the Degree of

Doctor of Philosophy "Ph D"

Analytical Chemistry

To Chemistry Department Faculty of Science Ain shams University

ACKNOWLEDGEMENTS

I would like to express my deep gratitude and thankfulness to my supervisor, Prof. Dr. Ibrahim H.A. Badr Professor of Analytical Chemistry, Faculty of Science, Ain Shams University, for his guidance and support throughout my PhD's program of study. No matter what kind of problem was discussed, his advice and encouragement always provided new perspectives. The expertise that he shared with me remains a tremendous source for the professional growth to me. I am very thankful for everything he has done for me. Also I would like to voice my appreciation to my supervisor Dr. Salah M. El Helbawy vice head of the forensic medicine authority and head of Forensic Chemistry Laboratories Department, for serving on my committee, giving technical suggestions, and generously providing me the use of many lab facilities. For giving me the opportunity to prepare my thesis in the forensic chemical laboratory at the Forensic medicine authority. His expert knowledge has been a great support for my work. I was always encouraged to invest maximum effort due to his excellent ability to motivate resulting in important outcomes for further investigations.

A special thank goes to Dr. Tarek Mahdy for his friendship, encouragement, suggestions, motivations, daily input, and the sharing of his expertise. All of his extraordinary help are greatly appreciated.

My deep gratitude and thankfulness communicate to family of the forensic chemistry laboratories specially Dr. Salwa Sami Kandeel. I have enjoyed doing research and discussing experimental details with them. Without her help, many things could have been much more difficult to achieve.

ACKNOWLEDGEMENTS

I am also grateful to the authority of the Central Laboratortry of Ain Shams University, Faculty of science for help with transmission electron microscopy measurements, as well as the antimicrobial activity tests and the HPLC instrument determinations. My special thanks are extended to the staff of the Central Metallurgical Research Institute laboratory (CMRI), for their effort and patience to use scanning electron microscopy. I owe my sincere appreciation to my family and relatives who have supported and encouraged me over the years. I would like to thank my beloved parents, my darling wife, and my sons for their love, affection, and invaluable support.

My deepest thanks go to my closest friends for their love, encouragement and support during my PhD.

Khalid Abo Bakr, 2015

No.	Contents	Pages
	List of abbreviations	1
	List of figures	2
	List of tables	6
	Acknowledgment	7
	Abstract	9
	Aim of the work	11
I	Chapter I	
I.1	Introduction	12
I.1.1	Sample preparation	12
I.1.2	Membrane technology	13
I.1.3	Nanotechnology	18
I.1.4	Drugs of abuse	21
I.1.5	Malathion and Chlorpyrifos.	24
I.1.6	The criteria of the choice of analytical	25
	toxicology method.	
I.1.7	Bioanalytical method validation guidelines	27
I.2	Literature survey	28
I.2.1	Extraction methods of drugs from biological	29
	samples.	
I.2.2	Liquid- liquid extraction (LLE).	30
I.2.3	Solid phase extraction (SPE).	30
I.2.4	Solid phase micro-extraction (SPME).	30
I.2.5	Utility of polymeric membranes in solid phase	32
	extraction.	
I.2.6	Applications of Chitosan in SPE.	42

I.2.7	Polyvinylchloride (PVC) as adsorbent agent.	46
I.2.8	Silver and palladium nanoparticles: preparation and antimicrobial activity.	48
I.2.9	Nanocomposite polymers: preparation and applications.	51
I.2.10	Analysis of cannabinoids.	55
I.2.10.1	In oral fluids.	57
I.2.10.2	In blood samples.	59
I.2.10.3	In urine samples.	61
I.2.11	Extraction and analysis of malathion and chlorpyrifos.	68
I.2.12	Tramadol and benzhexol as abused drugs.	72
I.2.13	Method validation, GLP and SOP.	75
I.2.13.1	Selectivity.	75
I.2.13.2	Calibration model (linearity).	76
I.2.13.3	Accuracy, precision and recovery.	76
I.2.13.4	Range of measurement (LOQ, LOD).	77
I.2.13.5	Stability.	78
I.2.13.6	Matrix effect in mass spectrometry.	78
II	Chapter II: EXPERIMENTAL	80

II.1	Chemicals and reagents.	80
II.2	Preparation of solutions.	81
II.2.1	Tramadol, benzhexol and ketamine.	81
II.2.2	THC-COOH and THC-COOHd3.	82
II.2.3	Malathion and chlorpyrifos	82
II.3	Instruments.	83
II.3.1	Ultraviolet-visible spectroscopy (UV-Vis.)	83
II.3.2	Transmission electron microscopy (TEM).	83
II.3.3	Scan electron microscopy (SEM).	83
II.3.4	Fourier transform infrared spectra (FTIR).	84
II.3.5	Gas Chromatograph-mass spectrometer (GC-	84
	MS).	
II.3.6	HPLC-UV instrument.	85
II.4	Preparation of polymeric membranes.	85
II.4.1	Chitosan membrane.	85
II.4.2	PVC and PVC-COOH membranes.	86
II.5	Preparation of nanoparticles.	87
II.5.1	Silver nanoparticles.	87
II.5.2	Palladium nanoparticles	88
II.5.3	Characterization of the nanoparticles	88
II.6	Preparation of nanocomposite membranes.	89
II.6.1	Chitosan nanocomposites membrane	89
II.6.1.1	Ex situ preparations.	89
II.6.1.2	In situ preparations.	89
II.6.2	Carboxylated PVC nanocomposite membranes	90
II.6.2.1	Ex situ preparation.	90
II.6.2.2	In situ preparation.	90
II.7	Characterization of nanocomposite	90
	membranes.	

II.7.1	Distribution of the nanoparticles within the	90
	membrane.	
II.7.2	Antimicrobial activity of the nanopalladium	90
	membranes.	
II.8	Extraction of tramadol and benzhexol in	91
	human blood using chitosan based	
	membranes.	
II.8.1	Extraction method.	91
II.8.2	Optimization of the extraction method.	92
II.8.2.1	Adjustment of pH.	92
II.8.2.2	Ionic strength.	93
II.8.2.3	Effect of stirring.	93
II.8.2.4	Conditioning solvents.	93
II.8.2.5	Extraction time.	94
II.8.2.6	Extraction temperature.	94
II.8.2.7	Membrane thickness.	94
II.8.3	Method applicability.	95
II.9	Membrane preparation for FTIR studies.	95
II.10	Extraction and determination of 11-nor- d9-	96
	tetrahydrocannabinol-9-carboxylic acid (THC-	
	COOH) in human urine using PVC-COOH	
	membranes.	
II.10.1	Extraction method.	96
II.10.2	Optimization of the extraction method.	97
II.10.2.1	Adjustment of pH.	97

II.10.2.2	Ionic strength.	97
II.10.2.3	Effect of stirring.	98
II.10.2.4	Conditioning solvent.	98
II.10.2.4	Extraction time.	98
II.10.2.5 II.10.2.6		
	Extraction temperature.	99
II.10.2.7	Membrane thickness.	99
II.10.3	Method applicability.	99
II.11	Membrane preparation for FTIR studies.	100
II.12	GC-MS method validation.	100
II.12.1	Linearity and quality control samples for	101
	tramadol and benzhexol determination.	
II.12.2	Linearity and quality control samples THC-	101
	COOH determination.	
II.12.3	Recovery.	102
II.12.4	Specificity.	102
II.12.5	Accuracy.	102
II.12.6	Precision.	102
II.12.7	Limit of detection (LOD) and limit of	103
	quantification (LOQ).	
II.12.8	Stability.	103
II.13	Extraction and determination of Malathion in	103
	human blood using PVC-COOH membranes.	
II.13.1	Extraction method.	103
II.13.2	Optimization of the extraction method.	104
II.13.2.1	Adjustment of pH.	104

II.13.2.2	Ionic strength.	104
II.13.2.3	Effect of agitation.	105
II.13.2.4	Conditioning solvents.	105
II.13.2.5	Extraction temperature.	105
II.13.2.6	Extraction time.	106
II.13.2.7	Membrane thickness.	106
II.13.4	Method applicability.	107
II.14	Membrane preparation for FTIR studies.	107
II.15	HPLC method validation for determination of malathion extracted by the membrane.	107
II.15.1	Linearity and quality control samples.	107
II.15.2	Limit of detection (LOD) and limit of	108
	quantification (LOQ).	
II.15.3	Selectivity.	108
II.15.4	Recovery	108
II.15.5	Accuracy and precision.	109
II.15.6	Stability.	109
III	Chapter III Results and discussion.	110
III.1	Characterization of nanoparticles.	110
III.2	Characterization of palladium nanocomposite	113
	membranes.	
III.3	Antimicrobial activity of palladium nanocomposite membranes.	117
III.4	Application of chitosan membranes as SPMEM	119

	for tramadol and benzhexol.	
III.4.1	Optimization of the extraction method.	119
III.4.1.1	Selection of chitosan membrane with best extraction efficiency.	120
III.4.1.2	Optimization of pH.	122
III.4.1.3	Ionic strength.	124
III.4.1.4	Effect of stirring.	124
III.4.1.5	Conditioning solvents.	125
III.4.1.6	Extraction time.	126
III.4.1.7	Membrane thickness.	127
III.4.1.8	Desorption conditions.	128
III.4.1.9	Adsorption capacity.	129
III.4.2	FTIR investigations of membrane analytes interaction.	129
III.4.3	Validations of the method.	134
III.4.3.1	Method selectivity.	134
III.4.2.2	Linearity of the method.	138
III.4.2.3	Accuracy and Precision.	139
III.4.2.4	Absolute recoveries.	138
III.4.2.5	Dilution effect.	140
III.4.2.6	Stability.	140
III.4.3	Real samples application of nanopalladium	140

	chitosan SPMEM.	
III.5	Application on the PVC-COOH membrane as	142
	SPMEM for THC-COOH in human urine.	
III.5.1	Optimization of the extraction conditions.	142
III.5.1.1	Selection of PVC/PVC-COOH SPMEM with best	142
	extraction efficiency.	
III.5.1.2	Adjustment of pH.	144
III.5.1.3	Ionic strength.	145
III.5.1.4	Effect of stirring.	147
III.5.1.5	Conditioning solvents.	147
III.5.1.6	Extraction time.	147
III.5.1.7	Membrane thickness.	148
III.5.1.8	Desorption conditions.	150
III.5.2	Validation of the method.	152
III.5.2.1	Method selectivity.	152
III.5.2.2	Linearity of the method.	155
III.5.2.3	Accuracy and Precision.	155
III.5.2.4	Absolute recoveries.	156
III.5.2.5	Dilution effect.	157
III.5.2.6	Stability.	158
III.5.3	Adsorption capacity of the membrane.	159
III.5.4	Real samples applicability of nano palladium	159

	PVC-COOH.	
III.6	Application on the PVC-COOH membrane as	159
	SPMEM for malathion pesticide from human	
	blood.	
III.6.1	Optimization of the extraction method.	159
III.6.1.1	Selection of PVC / PVC-COOH SPMEM with	160
	best extraction efficiency.	
III.6.1.2	Optimization of pH.	162
III.6.1.3	Ionic strength.	163
III.6.1.4	Effect of stirring.	164
III.6.1.5	Conditioning solvents.	164
III.6.1.6	Extraction time.	164
III.6.1.7	Membrane thickness.	165
III.6.1.8	Desorption conditions.	166
III.6.1.9	Adsorption capacity.	168
III.6.2	Method validation.	168
III.6.2.1	Method selectivity.	168
III.6.2.2	Method linearity.	169
III.6.2.3	Limits of detection and quantitation.	170
III.6.2.4	Accuracy and precision.	170
III.6.2.5	Recovery.	172
III.6.2.6	Dilution effect.	172

III.6.2.7	Stability.	172
III.6.2.8	Real samples applicability of nano palladium	173
	PVC-COOH.	
III.6.3	FTIR investigations of membrane analytes	174
	interaction.	
	Conclusion.	179
	References.	181
	Summary.	213
	Arabic summary.	219

ABSTRACT

The merge of nanomaterials with polymeric compounds led to the development of materials with striking properties. Such nanoparticles based composites are used as support in a solid phase microextraction adsorption of analytes from biological samples. Precise, easy and fast drug extraction techniques are necessary for satisfactory forensic intelligent and clinical purposes.

In this study a novel chitosan and carboxylated poly vinyl nanocomposite membranes were prepared characterized. The comparison between peak areas resulted from application of pure polymer, polymer/silver nanocomposite and polymer/palladium nano-composite membranes indicated that incorporating palladium nano particles in the polymer membranes enhanced the extraction competence of the membrane to a high extent. The extraction conditions; adsorption time, ionic strength, agitation, pH and membrane thickness were studied and optimized to improve the technique sensitivity. The analytes were determined by gas chromatograph—mass spectrometer (GC-MS) for tramadol, benzhexol and the urinary metabolite of cannabis in 11-nor-D⁹-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). While HPLC instrument was used to determine the extracted malathion. Estimated lower limit of detection (LOD) and lower limit of quantitation (LOQ) were 0.01 and 0.03 µg/ml for benzhexol, 0.02 and 0.04 µg/ml for tramadol, 0.01 and 0.03 µg/ml for THC-COOH and 0.03 and 0.05 µg/ml for malathion respectively, with relative standard deviations lower than 15%. The procedure showed linearity between the 0.03 and 25 µg/ml for tramadol, 0.04 and 25 µg/ml for benzhexol, 0.03 and 15 µg/ml for THC-COOH and 0.05 and 20 µg/ml for malathion with correlation coefficients (r²)

ABSTRACT

ranging between 0.9627 and 0.9937. Finally, the proposed procedure has been successfully applied to determine each analyte under investigation in some real cases of the toxicological lab.

Keywords: Nano palladium, nano silver, nanocomposite membrane, Chitosan, Carboxylated polyvinylchloride, GC/MS, HPLC.