PREVALENCE OF PSYCHIATRIC DISORDERS IN A SAMPLE OF PATIENTS WITH CHRONIC HEPATITIS C ON INTERFERON, RIBAVIRIN AND SOVALDI THERAPY

Thesis submitted for partial fulfillment for Masters Degree in neuropsychiatry

By

Hadeer Khairy Ali Hemida (M.B., B.Ch)

Supervised By

Prof. Tarek Ahmed Okasha

Professor of Neuropsychiatry

Faculty of Medicine, Ain Shams University

Prof. Ghada Refaat Amin

Professor of Neuropsychiatry

Faculty of Medicine, Ain Shams University

Assist. Prof. Dalia Abd El-Moneim Mahmoud

Assistant Professor of Neuropsychiatry

Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2017

Abstract

Introduction: The World Health Organization considers chronic hepatitis C (CHC) as a major public health problem and estimates that 3% of the world's population (170 million people) is infected with hepatitis C virus (HCV) and is at risk of developing liver cirrhosis and liver cancer. The prevalence of hepatitis C virus (HCV) infection varies throughout the world with the highest number in Egypt, ranging from 6% to more than 40% with an average of 13.8%. In populations of blood transfusion recipients over the age of 30, HCV has been reported as high as 73% and in the general population aged 40–60 years it was estimated as high as 55%

<u>Aims:</u> a) To compare the rate of incidence of psychiatric disorders co morbid with chronic hepatitis C in patients groups of: a) those using combination of IFN, Ribavirin and Sovaldi, b) those using combination of Daklinza, Ribavirin and Sovaldi. b) To identify the risk factors that make the patients more vulnerable to have such psychiatric co morbidities.

<u>Methodology:</u> This study aimed at studying the prevalence of psychiatric disorders in a sample of 260 patients' males and females, aged (18-75), diagnosed with Hepatitis C by PCR and collected from the outpatient clinic of internal medicine and Interferon unit in Damanhur Medical National Institute. Then patients classified into two groups; the first group (G1) included patients receiving peg IFN- α , Ribavirin and Sovaldi, the second group (G2) included patients receiving Daklinza, Ribavirin and Sovaldi.

Results: Socio-demographic characteristics of the sample: The study sample was randomly selected from patients of the outpatient clinic of internal medicine and Interferon unit in Damanhur Medical National Institute. Males constituted 53.1% of the total sample size. The cause of having more men in the sample is probably due to the medical examination which is a perquisite for any locally or onboard job (any institution requires a negative HCV PCR examination). As a result more men are accidentally diagnosed with HCV.

<u>Limitations:</u> Relatively small sample size may not fully reflect factors among all hepatitis c patients in the population and some factors may be hidden. A larger sample selected by stratified randomization including all age groups, different socioeconomic profiles and occupations, and different marital conditions is recommended.

Recommendations: Application of the study or similar studies on larger sample size of patients with HCV. Comparingall available protocols of HCV treatment rather than only two protocols.

Keywords: Hepatitis C Virus, Chronic Hepatitis C, Ribavirin and Sovaldi therapy

Acknowledgment

First of all, thanks to **Allah** whose magnificent help was the main factor in completing this work.

I wish to express my deepest gratitude to all those who assisted me to complete this work.

I'd like to express my sincere thanks and gratitude to **Professor Tarek Ahmed Okasha**, Professor of Neuropsychiatry Faculty of Medicine, Ain Shams University, **for** his support and valuable advice without which this work wouldn't have been completed.

I'd also like to warmly thank **Professor Ghada Refaat Amin**, Professor of Neuropsychiatry Faculty of Medicine, Ain Shams University, **for** her precious remarks, continuous support and guidance.

All my appreciation and regards to **Assist. Prof. Dalia Abd El-Moneim Mahmoud**, Assistant Professor of Neuropsychiatry Faculty of Medicine, Ain Shams University, **for** giving me much of her time, effort and valuable advice which lead to the progress and accomplishment of this work.

I'd also wish to express my thanks and regards to my family for their support all through this work.

List of Contents	
• Contents	IV
• List of abbreviations	IV
• List of tables	IV
• List of figures	IV
• Introduction	2
• Aim of work	9
Review of literature	
o Chapter 1:	
- A clinical background on the Hepatitis C virus	14
o Chapter 2:	
- Neuropsychiatric morbidities associated with	33
HCV infection	
o Chapter 3:	5.5
- Management of the HCV infection	55
• Subjects and methods	115
• Results	126
• Discussion	152
• English summary	165
• Limitations	180
• Recommendations	183
• References	188
Arabic summary	100

List of Abbreviations

30H-KYN	3-hydroxy-kynurenine
5-HIES	5-Hydroxyindolylessigsäure
5-HT	5-hydroxytryptamine
ACTH	Adrenocorticotropic hormone
ALT	Alanine aminotransferase
ANC	Absolute neutrophil count
ANRS	Agence Nationale de Recherche sur le
	SIDA et les Hépatites Virales
AST	Aspartate aminotransferase
BDI	Beck Depression Inventory Scale
BMECs	Brain microvascular endothelial cells
CDC	Centers for Disease Control and
	Prevention
CES-D	Center for Epidemiologic Studies
	Depression
CHC	Chronic hepatitis C
Cho	Choline
CNS	Central nervous system
Cr	Creatine
CTP	Child-Turcotte-Pugh Score
DAA	Direct-acting antiviral
DAT	Striatal dopamine transporter
DCV	Daclatasvir
DDIs	Drug-drug interactions
DNA	Deoxyribonucleic acid
DNRIs	Norepinephrine dopamine reuptake
	inhibitors
DSM III	Diagnostic and statistical manual of

	mental disorders 3 rd ed
DSM-IV	Diagnostic and statistical manual of
	mental disorders 4 th ed
EASL	European Association for the Study of
	the Liver
ECT	Electroconvulsive therapy
EDHS	Egyptian Demographic Health Survey
EHIS	Egypt Health Issues Survey
EIA	Enzyme immunoassay
EVR	Early virologic response
FDA	Food and Drug Administration
FDG	Fluoro-desoxy-glucose
GAD	Generalized Anxiety Disorder
G-CSF	Granulocyte-colony stimulating factor
GGT	Gamma-glutamyl transpeptidase
HAM-D	Hamilton Depression Rating Scale
Hb	Hemoglobin
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HCV-	Extra-hepatic manifestations
EHMs	
HIO	Health insurance organization
HIV	Human immune deficiency virus
HPA	Hypothalamic-pituitary adrenal –axis
HRQL	Health Related Quality of Life
IDO	Indoleamine-2,3-dioxygenase
IFN	Interferon
INR	International normalized ratio
Ins	Myo-Inositol

LDV	Ledipasvir
MDD	Major Depressive Disorder
MMSE	Mini Mental State Examination
MOHP	Ministry of Health and Population
MRI	Magnetic resonance image
MRS	Magnetic resonance spectroscopy
NAA	N-acetylaspartate
NCCVH	National Committee for the Control of
	Viral Hepatitis
NIH	National Institutes of Health
NTCs	National viral hepatitis treatment
	centers
NTP	National Treatment Program
PAT	Parenteral-antischistosomal-therapy
PBMC	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
Peg-IFNα	Peginterferon alpha
PET	Positron emission tomography
P-gp	P glycoprotein
QUIN	Quinolinic acid
RBV	Ribavirin
RIBA	Recombinant immunoblot assay
RNA	Ribonucleic acid
RT-PCR	Reverse transcription polymerase
	chain reaction
RVR	Rapid virologic response
SCID CV	The Structured Clinical Interview for
	DSM-4 Disorders—Clinician Version
SERT	Mesencephalic/hypothalamic serotonin
SGA	Second generation antipsychotics
SIM	Simiprevir

SNRIs	Serotonin and norepinephrine reuptake inhibitors
SOF	Sofosbuvir
SPECT	Single-photon emission tomography
SSRI	Selective serotonin reuptake inhibitors
SUDs	Substance use disorders
SVR	Sustained virological response
TAG	Technical Advisory Group
TCAs	Tricyclic antidepressants
TNF-	Tumor necrosis factor alpha
alpha	
TSH	Thyroid-stimulating hormone
WHA	World Health Assembly Resolution
WHO	World Health Organization

List of Tables

Title	Page No
Table (1): Child-Turcotte-Pugh Score (CTP).	31
Table (2): CTP scores and risk of death.	31
Table (3): Management of Anxiety.	94
Table (4): Management of Irritability/Labile Anger.	98
Table (5): Descriptive analysis of the socio-	128
demographic data of the whole sample.	
Table (6): Descriptive analysis of the hepatic profile	129
data of the whole sample.	
Table (7): The MMSE assessment among the whole	130
sample.	
Table (8): Rate of occurrence of psychiatric co	131
morbidities among the whole sample using SCID-I.	
Table (9): Severity of Depression among the whole	131
sample.	
Table (10): Comparison of the demographic data	
between the 2 treatment regimen groups.	
Table (11): Comparison of the Duration of	
Treatment between the 2 treatment regimen groups.	
Table (12): Comparison of the MMSE between the	134
2 treatment regimen groups.	
Table (13a): Incidence of Psychiatric Disorders	135
among the study groups.	
Table (13b): Comparison of rate of psychiatric	136
disorders between the 2 treatment regimen groups.	
Table (13c): Comparison of rate of psychiatric	136
disorders between the 2 treatment regimen groups.	
Table (14): Comparison of the severity of	137
depression between the 2 treatment regimen groups.	
Table (15): Demographic, clinical and cognitive	138

data among the subgroups with and without	
psychiatric morbidity in Group I.	
Table (16): Demographic data among the subgroups	141
with and without psychiatric morbidity in Group II.	
Table (17): Demographic, clinical and cognitive	144
data between patients subgroups with psychiatric	
morbidity among treatment protocol group I and II.	

List of Figures

Figure	Page No
Figure (1): Hepatitis C virus in Egypt compared to	15
other countries in the world.	
Figure (2): Global epidemiology of hepatitis C	17
virus infection.	
Figure (3): Global HCV prevalence.	18
Figure (4): A campaign against schistosomiasis in	25
the 1960s and '70s, spread hepatitis C.	
Figure (5): Boxplot shows the median age in years	146
and its range among Group I and Group II.	
Figure (6): Clustered Bar Chart shows the sex	147
frequency distribution among Group I and Group II.	
Figure (7): Clustered Bar Chart shows the marital	147
status frequency distribution among Group I and	
Group II.	
Figure (8): Clustered Bar Chart shows the	148
occupation frequency distribution among Group I	
and Group II.	
Figure (9): Boxplot shows the median duration of	148
treatment in months and its range among Group I	
and Group II.	
Figure (10): Pie Chart shows the frequency	149
distribution of the patients with and without	
Psychiatric Disorder.	
Figure (11): Clustered Bar Chart shows the	150
incidence rate of Psychiatric disorders among Group	
I and Group II.	

INTRODUCTION

Introduction

The World Health Organization considers chronic hepatitis C (CHC) as a major public health problem and estimates that 3% of the world's population (170 million people) is infected with hepatitis C virus (HCV) and is at risk of developing liver cirrhosis and liver cancer (Poynard et al., 2003; Shepard et al., 2005; Lavanchy, 2009; Dan et al., 2012; S. Pol et al., 2012).

The prevalence of hepatitis C virus (HCV) infection varies throughout the world with the highest number in Egypt, ranging from 6% to more than 40% with an average of 13.8%. In populations of blood transfusion recipients over the age of 30, HCV has been reported as high as 73% and in the general population aged 40–60 years it was estimated as high as 55% (Frank et al., 2000; Kamal, 2007; El Sharkawi, 2008; El-Zayadi, 2009).

The Egyptian Demographic Health Survey (EDHS), a cross sectional survey including hepatitis C virus (HCV) biomarkers, was conducted in 2008 on a large nationally representative sample. It estimated HCV prevalence among the 15–59 years age group to be 14.7% (**El-Zanaty and Way, 2009**).

The diagnosis of HCV itself has harmful effects on psychological well being and the emotional challenge becomes great. Hepatitis C infection may negatively impact the patient's quality of life and normal activities of daily living (e.g., driving) (Corm berg et al., 2002; Wein et al., 2004).

Hepatitis C is now the leading cause of end-stage liver failure and the leading indication for liver transplant in the developed world. It is the leading risk factor for hepatocellularcarcinoma (HCC) in Egypt (Jeannette et al., 2005; Strickland, 2006; Zakaria et al., 2007; Dan et al., 2011; Brown et al., 2012).

The major route of exposure to HCV appears to have been widespread parental antischistosomal treatment, with more than 35 million injections administered over a 20-year period (1960–1980). However, transmission continues despite termination of this program and the implementation of measures to reduce infection (Frank et al., 2000; Strickland, 2006; Lehman and Wilson, 2009).

Like many chronic medical illnesses, hepatitis C is associated with an increased prevalence of psychiatric disorder particularly depression. The presence of depressive symptoms in hepatitis C, as in other chronic medical illnesses, is important because they have an

adverse effect on the course of illness, with amplification of functional impairment, reduced physical symptoms, treatment compliance and reduced quality of life. It may mild cognitive changes to overt hepatic encephalopathy, which represents significant a complication of liver disease (Dwight et al., 2000; Evon et al., 2009; Afsar et al., 2009).

Today, HCV infection and its complications are among the leading public health challenges in Egypt (Miller and Abu-Raddad, 2010).

The combination of pegylated interferon (peginterferon) and ribavirin is now considered the optimal therapy for chronic hepatitis C. A 48- week course of this combination results in sustained eradication of HCV RNA from serum in approximately 50% of patients (Manns et al., 2001; Hadziyannis et al., 2004; Roulot et al., 2007; Lehman and Wilson, 2009; Sarrazin et al., 2010).

Treatments with interferon-alpha (IFN-α) have the potential to alter the course of chronic hepatitis, prevent complications, and improve outcome. Peginterferon and ribavirin (RBV) may also be successful in selected non responders or relapsers to standard interferon with or without ribavirin. SOVALDI is a hepatitis C virus (HCV) nucleotide analog NS5B polymerase inhibitor indicated for