

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.149

COMPARISON BETWEEN OPTIMUM SOLUTIONS USING THE

INVENTORY TECHNIQUES AND AI TECHNIQUES BY BUILDING A MATHEMATICAL MODEL FOR OPTIMUM UTILITY OF INVENTORY UNDERGROUND WATER IN EGYPT

THESIS

For the Degree of Ph. D.
In Mathematics "Pure Mathematics"

By

SAMIR EL-MOHAMMADY ATTIA NSSAR

Mathematics Department Faculty of Science Helwan University

Supervisors

ElRandy

Prof. Dr. NABWIA A. EL-RAMLY

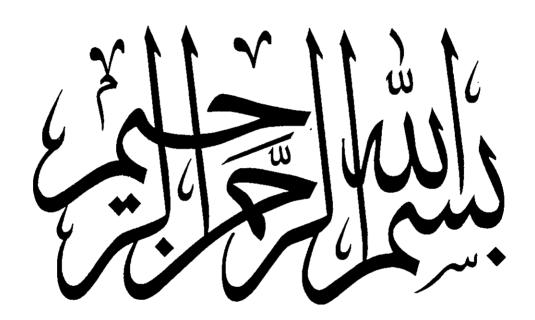
Prof. Of Mathematics Faculty of Science Menoufiya University

Prof. Dr. MOHAMED M. EL-KAFRAWY
Prof. Of OR

Institute of National Planning

A. Fahny

Prof. Dr. ALY A. FAHMY


Prof. Of AI Military Technical College

Faculty of Science

Menoufiya University

(Shiben EL-Kom)

1996

ACKNOWLEDGMENT

I would like to acknowledge my deepest gratitude and thankfulness to Prof. Dr. Nahwia a. El-Ramly, for suggesting the topics of the research and for her kind supervision and invaluable help during the preparation of the thesis.

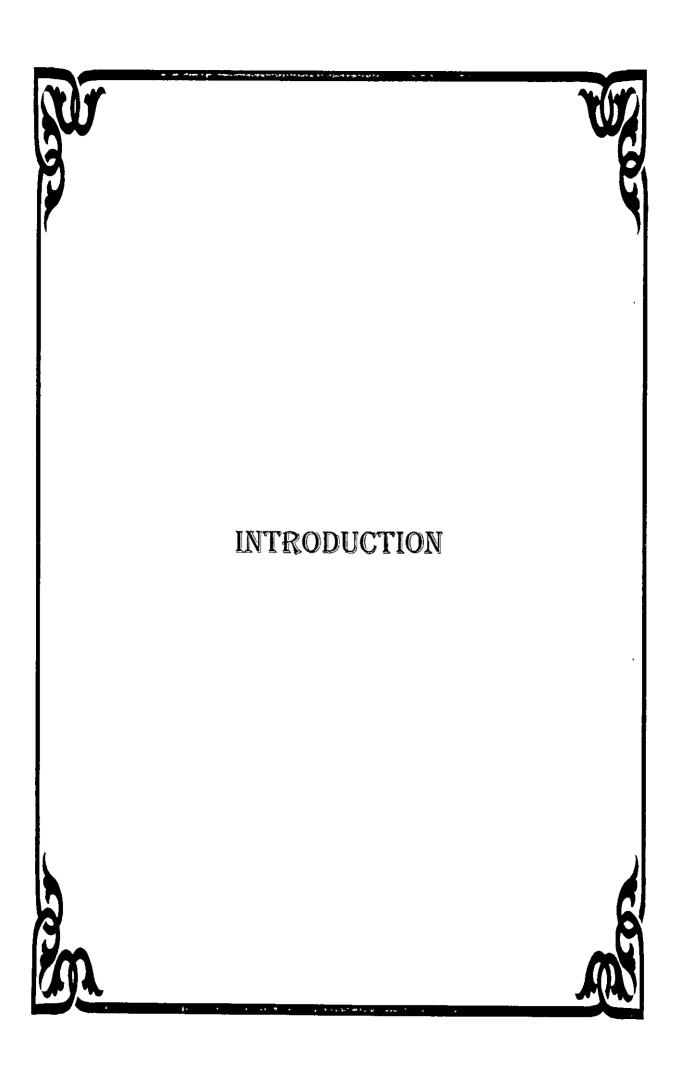
I wish to express my sincere appreciation to Prof. Dr. Mahamed M. El-Kafrawy for his suggestion of the topic of the thesis, endless help facilities, continuous pieces of advice, sincere encouragement and the big efforts he did in critically reading the manuscript.

I am, particularly, indebted to Prof. Dr. Aly A. Fahmy for his suggesting the topic of the thesis and for his kind supervision and for his invaluable honest assistance, active supervision, fruitful suggestions and follow up of the work.

Finally, I would like to thank my parents for their invaluable encouragement and support throughout my education career, and also I would like to thank my wife, my daughter, and all my family.

CONTENTS

	Page
Introduction	1
1. Problem Definition	4
1.1. Problem Description	4
1.2. Underground water Balance in the Nile Valley and	
Delta	7
1.2.1. Balance Along the Nile	7
1.2.2. Balance on the underground water system	8
1.3. Objective: Prediction and Planning	9
2. Different Solutions Approaches	10
2.1. Inventory Theory Approach (Part I)	10
2.2. Artificial Neural Networks Approach (Part II)	10
Part I	13
Chapter 1: Inventory Theory	13
1.1. Historical Background	13
1.2. Introduction	15
1.3. Necessity for Maintaining Inventory	16
1.4. Variables in an Inventory Problem	18
1.5. Inventory Models	23
1.5.1. Inventory Models with Deterministic Demand	26
1.5.1.1. Model 1A	
(Demand Rate Uniform, Production Rate	
Infinite)	26


	Page
1.5.1.2. Model 1B	
(Demand Rate Non-Uniform, Production	
Rate Infinite)	30
1.5.1.3. Model 1C	
(Demand Rate Uniform, Production Rate	
Finite)	32
1.5.1.4. Model 2A	
(Demand Rate Uniform, Production Rate	
Infinite, Shortages Allowed)	34
1.5.1.5. Model 2B	
(Demand Rate Uniform, Production Rate	
Infinite, Shortages Allowed, Time Interval	
Fixed)	37
1.5.1.6. Model 2C	
(Demand Rate Uniform, Production Rate	
Finite, Shortages Allowed)	39
1.5.2. Inventory Models with Stochastic Demand	45
1.5.2.1. Model 3A	
(Instantaneous Demand, Setup Cost Zero,	
Stock Levels Discrete and Lead Time	
Zero)	45

	Page
1.5.2.2. Model 3B	J
(Instantaneous Demand, Setup Cost Zero,	
Stock Levels Continuous, Lead Time	
Zero)	50
1.5.2.3. Model 4A	
(Continuous Demand, Setup Cost Zero,	
Stock Levels Discrete, Lead Time Zero)	52
1.5.2.4. Model 4B	
. (Continuous Demand, Setup Cost Zero,	
Continuous Stock Levels, Lead Time	
Zero)	56
Chapter 2: Stochastic Methodes of Operations Research	59
2.1. Markov chains with discrete time parameter	59
2.2. Classification of states and asymptoic distributions	67
2.3. Markov chains with continuous time parameter	83
2.4. Limit distributions for chains with continuous	
parameter	94
2.5. Computation of transient solutions of continuous	
parameter Markov chains	97
Chapter 3: The Proposed Model	104
3.1. Mathematical Model	104
3.2. Application Study	110
Part II	114

Chapter 4: Artificial Neural Networks	Page 114
4.1. Artificial Neural Networks Characteristics	116
4.2. Backpropagation Network with Momentum Term	117
4.3. Derivation of Learning Rules	129
4.4. Number of Hidden Layers	132
4.5. MinMax Tables and Network Ranges	137
4.6. Learning Schedule	142
Chapter 5: Application of Neural Networks for Solving Water	er
Distribution Problems	146
5.1. Designing Neural Network Architectures	146
5.2. Optimal Network Architectures	149
5.3. Network Construction Algorithm	151
5.4. A Parametric Analysis	153
5.4.1. Sigmoid Architectures	154
5.4.2. Tanh Architectures	162
5.4.3. The Separation of the Outputs	172
5.5. The Result Networks	176
5.6. Nile Water Distribution and Underground Water	
Extraction : A Case Study	179
Part III	184
Chapter 6 : Comparison and Case Study	184
6.1. Comparison between the two Approaches	184
6.2. Prediction by Using the Ideal Models	189

Chapter 7 : Conclusions	Page 193
Appendix	196
References	224
Arabic Summary	

.

INTRODUCTION

Egypt needs to raise its agricultural production during a period with a reduced availability of Nile water from lake Nasser. This increase in agricultural production has to be achieved mainly from the Nile Valley and Delta (Fig. 1). During the last two decades, the annual runoff of the Nile River has declined to below its average (55.5 billion m³/year). This brought into attention the necessity for effective usage of available underground water resources (4.9 billion m³/year) (*Diab*, 1992; *Biswas*, 1991).

Although these resources represent 9% of the total water available in Egypt, only 3% are currently used (see Diab, 1992 and Farid, 1988).

Development of underground water resources plays an important role for the efficient use of the Nile water resources and for the control of the underground water table.

Underground water in itself is not a resource as it originates from the Nile (indirectly). Underground water development for irrigation aims at improving drainage conditions along with achieving a better distribution of irrigation water. However, because there is a significant difference between surface water resources and underground water, we have to be careful in developing our underground water resources.

Less reliable information is available on underground water than on surface water.

As surface water supplies to Egypt are limited by the present quota of the Nile, and already water shortage occurs during the summer season, this underground water storage basin becomes an important factor in the