

INNOVATIVE APPROACHES TO HANDLE ISSUES IN PERFORMANCE-BASED SEISMIC BEHAVIOUR OF MULTISTORY RC BUILDINGS

By

AMER ABDULWAHHAB HAMMADI AL-NUAIMI

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In STRUCTURAL ENGINEERING

INNOVATIVE APPROACHES TO HANDLE ISSUES IN PERFORMANCE-BASED SEISMIC BEHAVIOUR OF MULTISTORY RC BUILDINGS

By

AMER ABDULWAHHAB HAMMADI AL-NUAIMI

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In STRUCTURAL ENGINEERING

Under the Supervision of

MOHAMED EZZAT SOBAIH

Professor Emeritus of Structures
Structural Engineering Dept.
Faculty of Engineering
Cairo University

ADEL YEHIA AKL

Professor Emeritus of Structures Structural Engineering Dept. Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

INNOVATIVE APPROACHES TO HANDLE ISSUES IN PERFORMANCE-BASED SEISMIC BEHAVIOUR OF MULTISTORY RC BUILDINGS

By

AMER ABDULWAHHAB HAMMADI AL-NUAIMI

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mohamed Ezzat Sobaih, Thesis Main Advisor

Professor Emeritus of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

Prof. Dr. Adel Yehia Akl, Thesis Advisor

Professor Emeritus of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

Prof. Dr. Abd-Alrahman Bazaraa. Internal Examiner

Professor Emeritus of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

.....

Prof. Dr. Omar El-Nawawy, External Examiner

Professor Emeritus of RC Structures, Ain Shams University, Faculty of Engineering, Structural Engineering Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer: Amer Abdulwahhab Hammadi Al-Nuaimi

Date of Birth: 20 / 3 / 1957

Nationality: Iraqi

E-mail: alnuaimi.amer@gmail.com

Phone: +201117799871

Address: Baghdad Iraq- Baghdad University -Civil

Engineering Department

Registration Date: 1 / 10 / 2012

Awarding Date: / 2016

Degree: Doctor of Philosophy

Department: Structural Engineering Department

Supervisors: 1-Prof. Dr. Mohamed Ezzat Sobaih

2-Prof. Dr. Adel Yehia Akl

Examiners: 1-Prof. Dr. Mohamed Ezzat Sobaih

2-Prof. Dr. Adel Yehia Akl

3-Prof. Dr. Abd-Alrahman Sadek Bazaraa **4-Prof. Dr.** Omar Ali Mousa El-Nawawy

(Ain Shams University)

Title of Thesis:

Innovative Approaches to Handle Issues in Performance-Based Seismic Behaviour of Multistory RC Buildings

Key Words: Pushover, PBSD, Capacity Spectrum Method, Multistory buildings, Iraq. **Summary:**

The first aim of this study is to assess the performance objectives engaged in the Iraqi Seismic Code (ISC 1997) in order to make a realistic evaluation related to performance-based seismic design (PBSD) of multi-story reinforced concrete buildings and also to evaluate and compare the structural response demands obtained from nonlinear static analysis (NSA) procedures according to two versions of the capacity spectrum method (CSM) which are recommended in ATC 40 and ATC 55. The second aim is to present a simplified approach to handle the performance issues easily, by deriving the required factors to condensate the frame into an equivalent frame with a single bay model. This modeling will be called "The Condensed Frame Approach (CFA)".

Acknowledgment

I would like to express my sincere gratitude, and I am grateful for **Prof. Dr. Mohamed Ezzat Sobaih**, Professor of Structures, Structural Engineering Dept., Faculty of Engineering, Cairo University, for technical supervision, guidance and continuous encouragement. I wish him and his family good health and wellness. Sincere thanks and deepest appreciation for **Prof. Dr. Adel Yehia Akl**, Professor of Structures, Structural Engineering Dept., Faculty of Engineering, Cairo University, for his technical supervision and guidance and continuous encouragement during the thesis preparation.

Special thanks are due to my great late father, **Abdulwahhab** (Allah mercy him), who installed, in me, the seeds of love, tolerance, impartiality and perseverance. I would like to take this opportunity to thank my mother, my brother, sisters, and to the gifts of my late wife (Allah mercy her), my sons Omar and Mohammed Ali, and my lovely daughter Juman, for their continuous support and encouragement throughout my life.

I extend my sincere gratitude to my sincere and best friend, Amy who inspired the motivation in me to accomplish the task in a critical period of my life. I would also like to acknowledge my friends and colleagues Dr. Rafaa Mahmoud, Dr. Abdul Salam Al-Sabah, and Dr. Rafa Al-Suhaili, who inconvenienced themselves, on several occasions, in order to facilitate my research.

Dedication

Dedicated to Humanity, to those adoring Tolerance, Impartiality, and Perseverance.

Table of Contents

A	knowledgment	1
D	dication	ii
T	ble of Contents	iii
L	st of Tables	vi
L	st of Figures	viii
N	omenclature	xvi
A	ostract	xxii
1	Chapter One: Introduction	1
	1.1 Performance-Based Seismic Design	1
	1.2 Pushover Analysis Method	3
	1.3 Problem Definition	5
	1.4 Research Objectives	6
	1.5 The Methodology and Work Plan	6
	1.6 Thesis Organization	7
2	Chapter Two: Literature Review	9
	2.1 Introduction	9
	2.2 Review of Nonlinear Static Procedure	9
	2.2.1 Capacity Curve	10
	2.2.2 Demand Curve	11
	2.2.3 Performance Point	12
	2.2.4 Capacity Spectrum Method CSM-ATC 40	14
	2.2.5 Estimation of Damping	14
	2.2.6 Reduction of the Response Spectrum	17
	2.2.7 The Capacity Spectrum Method, CSM-ATC 55	18
	2.2.8 Effective Damping	19
	2.2.9 Modified Acceleration-Displacement Response Spectrum	21
	2.3 Literature	22
	2.3.1 Essentials and History	22
	2.3.2 Simplified Techniques	24
	2.3.3 Codes versus PBSD	25
3	Chapter Three: Preparatory Buildings for Assessment	27

	3.1	Introduct	ion	27
	3.2	Performa	nce of RC Buildings in ISC	28
	3.3	Distributi	ion of Seismic Forces	30
	3.4	Propertie	s of the Buildings	30
	3.5	Assumpti	ions of the Structural Model	33
4	Ch	apter Four	: Elements for Performance Assessment	35
	4.1	Determin	nation of Capacity Curves	35
	4.2	Prediction	n of Seismic Response Demands	44
	4.3	Performa	ince Assessment Requirements in PBSD	53
	4.4	Plasticiza	ntion:	60
5		-	: Assessment of the Iraqi Seismic Code due to the Two Versions ty Spectrum Method	67
	5.1	Performa	nce Levels of the RC Buildings	67
	5.2	Assessme	ent of Performances of RC Buildings	67
	5.3		ince Levels of the Buildings According to Plastic Rotation versus Inte	
	5.4	-	son of Seismic Demands Obtained from the Nonlinear Static Analysis	
		5.4.1	Roof Drift and Shear Strength Demands	68
		5.4.2	Number and Type of Plastic Hinges	75
		5.4.3	Inter-Story Drift Ratio Demands	76
6	Ch	apter Six:	Performance Prediction using RDR	77
	6.1	Roof Drif	ft Ratio	77
	6.2	Linear Re	elationship between the IDR and RDR	77
	6.3	Nonlinea	r Regression	80
7		-	en: Efficiency of Two-Dimensional Modeling in Representing nsional Frames	83
	7.1	Introduct	ion	83
	7.2	Propertie	s of the Considered Buildings	83
	7.3	From The	ree-Dimensional to Two-Dimensional Frames	85
	7.4	Performa	nce Objectives	87
		7.4.1	Determination of Capacity Curves	87
		7.4.2	Prediction of Seismic Response Demands	90
		743	Inter-Story Drift Ratio Demands	91

		7.4.4	Comparison of the Results	93
	7.5	Recomme	ndations Concluded	96
8	Cha	apter Eight:	The Condensed Frame Approach	98
	8.1	Introduction	on	98
	8.2		p-Dimensional Normal Frame (2DNF) to Two-Dimensional DCF)	
	8.3	Story with	Odd Columns' Number	99
	8.4	Story with	Even Columns' Number	101
	8.5	Normalize	ed Capacity Curves. of 2DNF versus 2DCF	103
	8.6	Prediction	of Seismic Response Demands	105
	8.7	Compariso	on of Dynamic Properties and Seismic Demands	109
9	Cha	apter Nine:	Effect of Number of Bays on the Performance Point	112
	9.1	Introduction	on	112
	9.2	Descriptio	n of Structural Model	112
	9.3	Pushover A	Analysis Results	113
	9.4	Investigati	on of the Results	114
1(O Cha	apter Ten: I	Discussion and Conclusions	116
	10.1	Introduct	ion	116
	10.2	2 Conclusio	ons for the First Three Objectives	116
	10.3	3 Conclusio	ons for the Last Three Objectives	118
		10.3.1	Simplification from 3DF to 2DNF	118
		10.3.2	Simplification from 2DNF to 2DCF	119
		10.3.3	Complexity versus Simplicity of Modeling	120
	10.4	Effect of	Number of Bays in Multistory Buildings	120
R	efere	ences		121

List of Tables

Table 2.1: Values for Damping Modification Factor, k
Table 2.2: Minimum Allowable SR _A and SR _V Values
Table 3.1: Section Details of Reinforced Concrete Frames Type T1S and T1N
Table 3.2: Building Type, Weight, Modal Mass, Fundamental Period, and Legend 34
Table 4.1: Analysis Results for T1S-P1, in Baghdad and Dehok due to ATC 40 44
Table 4.2: Analysis Results for T1S-P1, in Baghdad and Dehok due to ATC 55
Table 4.3: Analysis Results for T1S-P2, in Baghdad and Dehok due to ATC 40
Table 4.4: Analysis Results for T1S-P2, in Baghdad and Dehok due to ATC 55
Table 4.5: Analysis Results for T1N-P1, in Baghdad and Dehok due to ATC 40
Table 4.6: Analysis Results for T1N-P1, in Baghdad and Dehok due to ATC 55 46
Table 4.7: Analysis Results for T1N-P2, in Baghdad and Dehok due to ATC 40
Table 4.8: Analysis Results for T1N-P2, in Baghdad and Dehok due to ATC 55 46
Table 4.9: Deformation limits ATC 40 [1]
Table 4.10: The Maximum Inter-Story Drift Ratio for Seismic Hazard E3 (the bold
numbers mean the state exceeds the IO but less than LS)
Table 4.11: Number of Plasticizing Sections Created in the Buildings due to E3 Hazard
Level.(the asterisked bold numbers mean some hinges reach the LS) 60
Table 6.1: The Roof Drift Ratio
Table 6.2: The Maximum Inter-Story Drift Ratio
Table 6.3: Coefficient Values after Nonlinear Regression Formulation
Table 6.4: Calculated versus Predicted Interstory Drift Ratio
Table 7.1: Section Details of the Reinforced Concrete Frames

Table 7.2: Building Type, Weight, Modal Mass, Fundamental Period, and Legend 85
Table 7.3: Displacement and Strength Demands (Performance Points), for the Buildings 90
Table 7.4: Numbers of Degrees of Freedom, and Plastic Hinges due to Modeling 96
Table 8.1: Transformation Factor (α) and (β) for the CFA
Table 8.2: Section Details of Reinforced Concrete Condensed Frames
Table 8.3: Displacement and Strength Demands (Performance Points)
Table 9.1: Beam and Column Dimensions for Different Frame Topologies
Table 9.2: Frame Topologies, Beam and Column Reinforcement Ratios, Concrete
Strength and Steel Yield Strength used in Numerical Simulations
Table 9.3: The Fundamental Time Period, the Mass Participation Ratio, the Drift
Demands and the Shear Strength Demands
Table 10.1: Numbers of Degrees of Freedom and Plastic Hinges due to Modeling 120

List of Figures

Figure 1.1: The Inelastic Analysis Procedures for Estimating Seismic Demands [3] 2
Figure 1.2: Performance-Based Seismic Design Flow Diagram [4]
Figure 1.3: Performance Levels Described by the Capacity Curve [4]
Figure 1.4: Graphical Representation of the Capacity Spectrum Method of Equivalent
Linearization [1]5
Figure 2.1: Depicting the Development of an Equivalent SDOF System from a
Capacity Curve [3]
Figure 2.2:Generation of the Elastic Spectrum from the Ground Motion Records [3] 12
Figure 2.3: Performance Point, from SDOF to MDOF
Figure 2.4: Graphical Representation of the Capacity-Spectrum Method of Equivalent
Linearization, as Presented in ATC 40 [1]
Figure 2.5: Spectral Reduction Operation
Figure 2.6: The Method of CSM-ATC 40 with Effective Period and Damping
Parameters of Equivalent Linear System, along with a Capacity Curve 18
Figure 2.7: Types of Inelastic Behavior Considered. BLH=Bilinear Hysteretic
STDG=Stiffness Degrading, and STRDG=Strength Degrading [3]
Figure 2.8: Damping coefficients, B, as a function of damping, βeff, from various
resource documents [3]
Figure 2.9: Damping Coefficients, B, as a Function of Damping, βeff, from Various
Resource Documents [3]. 22
Figure 3.1: Seismic Zoning Map of Iraq [5]
Figure 3.2: Three Hazard Levels Response Spectra, for Baghdad and Dehok Zone 30

Figure 3.3: Perspective, 3D View of the Investigated Buildings	31
Figure 3.4: Buildings Group T1S, with Soft First Story	31
Figure 3.5: Buildings Group T1N, with Normal First Story	32
Figure 3.6: Equivalent Horizontal Static Design Seismic Loading (kN) ,Applied on a	
Typical Interior Frame According to the ISC in Baghdad Zone for the	
Investigated Buildings	33
Figure 4.1: Capacity Curves for the 3S-T1S, Buildings	36
Figure 4.2: Capacity Curves for the 3S-T1N, Buildings	37
Figure 4.3: Capacity Curves for the 6S-T1S, Buildings	38
Figure 4.4: Capacity Curves for the 6S-T1N, Buildings	39
Figure 4.5: Capacity Curves for the 9S-T1S, Buildings.	40
Figure 4.6: Capacity Curves for the 9S-T1N, Buildings	41
Figure 4.7: Normalized Capacity Curves for the 3S, Buildings	42
Figure 4.8: Normalized Capacity Curves for the 6S, Buildings	42
Figure 4.9: Normalized Capacity Curves for the 9S, Buildings	43
Figure 4.10: Normalized Capacity Curves for all Investigated Buildings	43
Figure 4.11: Drift Profile at the Performance Point for the Three Story Buildings due	
to ATC 40	47
Figure 4.12: Drift Profile at the Performance Point for the Three Story Buildings due	
to ATC 55	48
Figure 4.13: Drift Profile at the Performance Point for the Six Story Buildings due to	
ATC 40	49

Figure 4.14: Drift Profile at the Performance Point for the Six Story Buildings due to	
ATC 55	50
Figure 4.15: Drift Profile at the Performance Point for the Nine Story Buildings due to	
ATC 40	51
Figure 4.16: Drift Profile at the Performance Point for the Nine Story Buildings due to	
ATC 55	52
Figure 4.17 : The Inter-Story Drift Ratio for the Three Story Building According to	
ATC 40	54
Figure 4.18: The Inter-Story Drift Ratio for the Three Story Building According to	
ATC 55	55
Figure 4.19: The Inter-story Drift Ratio for the Six Story Building According to ATC	
40	56
Figure 4.20: The Inter-story Drift Ratio for the Six Story Building According to ATC	
55	57
Figure 4.21: The Inter-story Drift Ratio for the Nine Story Building According to ATC	
40	58
Figure 4.22: The Inter-story Drift Ratio for the Nine Story Building According to ATC	
55	59
Figure 4.23: Plasticizing Sequence of the Three Story Buildings due to P1 and P2	
According to ATC 40 and ATC 55 in Baghdad Zone, for Seismic Hazard	
E3	61
Figure 4.24: Plasticizing Sequence of the Three Story Buildings due to P1 and P2	
According to ATC 40 and ATC 55 in Dehok Zone, for Seismic Hazard E3	62

Figure 4.25	5: Plasticizing Sequence of the Six Story Buildings due to P1 and P2
	According to ATC 40 and ATC 55 in Baghdad Zone, for Seismic Hazard
	E3
Figure 4.26	5: Plasticizing Sequence of the Six Story Buildings due to P1 and P2
	According to ATC 40 and ATC 55 in Dehok Zone, for Seismic Hazard E3 64
Figure 4.27	7: Plasticizing Sequence of the Nine Story Buildings due to P1 and P2
	According to ATC 40 and ATC 55 in Baghdad Zone, for Seismic Hazard
	E3
Figure 4.28	3: Plasticizing Sequence of the Nine Story Buildings due to P1 and P2
	According to ATC 40 and ATC 55 in Dehok Zone, for Seismic Hazard E3 66
Figure 5.1:	Roof Drift Demands (cm) Obtained due to (E1)
Figure 5.2:	Shear Strength Demands (kN) Obtained due to (E1)
Figure 5.3:	Roof Drift Demands (cm) Obtained due to (E2)
Figure 5.4:	Shear Strength Demands (kN) Obtained due to (E2)
Figure 5.5:	Roof Drift Demands (cm) Obtained due to (E3)
Figure 5.6:	Shear Strength Demands (kN) Obtained due to (E3)
Figure 5.7:	Differences Ratio of the Displacement Demands Obtained from CSM-
	ATC 55 with respect to CSM-ATC 40, (E2)
Figure 5.8:	Differences Ratio of the Shear Strength Demands Obtained from CSM-
	ATC 55 with respect to CSM-ATC 40, (E2)
Figure 5.9:	Differences Ratio of the Displacement Demands obtained from CSM-
	ATC55 with respect to CSM-ATC40. (E3)