MR IMAGING OF HYPERVASCULAR LESIONS IN THE CIRRHOTIC LIVER

Essay

Submitted for the partial fulfillment of the master degree in radiodiagnosis

By: Doaa Fawzy Ibrahim Ismail M.B.B.C.H.

Supervised By: **Professor Dr. Hossam Abd El Qader Morsy**

Professor of Radiodiagnosis,

Faculty of Medicine Ain Shams University

DR. Yasser Abd El Khaleq Ibrahim

Lecturer of Radiodiagnosis,

Faculty of Medicine Ain Shams University

Faculty of medicine Ain Shams University

2013

Acknowledgment

First and foremost, I would like to give thanks to ALLAH the almighty.

I wish to express my deep gratitude to Prof. Dr. Hossam Abd El Kader Morsi, professor of diagnostic radiology, Faculty of Medicine, Ain Shams University for accepting the idea of this work, his efforts encouragement.

I also extend my thanks and appreciation to Dr. Yasser Ibrahim Abdel khalek lecturer of Diagnostic Radiology, Faculty of Medicine, and Ain Shams University for his valuable guidance, constructive criticism and great help in supervising this work.

It is my pleasure to express my deep appreciation to my professors and colleagues in the Radiology department, Ain Shams University.

I would like also to record my thanks and sincere gratitude to my family and my husband for their continuous encouragement and support. This indeed is a debt I could not ignore, or forget.

Content

Acknowledgment(I
List of Figures(II
List of Tables(IV
List of Abbreviations (V)
Chapter (1): Introduction (1
Chapter (2): Anatomy of the Liver
2.1: Gross Anatomy of the Liver (4
2.2: MRI Anatomy of the Liver (14
Chapter (3): Pathophysiologic Process of Carcinogenesis in Cirrhotic Liver (26
Chapter (4): Technique of MR Imaging Protocol(50
4.1: T1-Weighted Spoiled Gradient Echo In-Phase and Opposed-Phase (52
4.2: T2-Weighted Sequences(59
4.3: Suggested Protocol for Liver MR Imaging (62
Chapter (5): MRI Features and Illustrative Cases(74
Summary & Conclusion(VII
References(XI
Arabic Summary (XXI

List of Figures

Figure 2.1	showing Segmentation of the liver – Couinaud	7
Figure 2.2	Dissection to show the relations of the hepatic artery, bile duct and	11
riguie 2.2	portal vein to each other in the lesser omentum: anterior aspect	11
Figure 2.3	Arrangement of the hepatic venous territories	12
Figure 2.4	MRI segmentation of the liver	16
Figure 2.5	Hepatic vien MRI anatomy	18
Figure 2.6	Portal vien MRI anatomy	19
Figure 2.7	Hepatic artery MRI anatomy	20
Figure 2.8	Saggital MRI images of the liver	21
Figure 2.9	Coronal MRI images of the liver	22
Figure 2.10	Axial fat suppressed SPGR of the liver	24
Figure 2.11	Axial T2W FSE breath hold of the liver	24
Figure 2.12	Post-Gd axial, sagittal and coronal images of the liver	25
Figure 2.1	Hepatocellular carcinoma, cirrhotic liver with multiple tumor	34
Figure 3.1	nodules scatterd throughout	34
Figure 3.2	HCC with portal vein invasion macroscopic view	34
Figure 3.3	Tumor cells are arranged in trabecular & Pseudo glandular pattern	35
Figure 3.4	Microscopic view of a well-differentiated Lesion	35
Figure 3.5	Fibrolamellar carcinoma	39
Figure 3.6	Hemangioma pathology	42
Figure 3.7	NRH in a patient with Budd-Chiari syndrome	48
Figure 4.1	Axial breath-hold in-phase and out-of-phase	53
Figure 4.2	Parallel imaging without compromising image quality of an in phase and out phase	54
Figure 4.3	Axial liver breath-hold images from a standard abdominal imaging protocol	57
Figure 4.3 (continued)	dynamic gadolinium-chelate enhanced GRE T1-weighted	58
	Typical MR imaging: axial standard fat-suppressed T2- weighted,	
Figure 4.4	Axial in-phase gradient-echo (GRE) T1-weighted, Axial 3D	
	arterial phase GRE T1-weighted	
Figure 4.4	Volume-rendered image from dynamic gadolinium-enhanced	65
(continued)	arterial phase and delayed phase.	
Figure 5.1	Regenerative or low grade dysplastic nodule	76
Figure 5.2	Regenerative or low grade dysplastic nodule	77

Figure 5.3	Steatotic regenerative nodules	78
Figure 5.4	Siderotic nodules	79
Figure 5.5	High grade dysplastic nodule or small HCC	82
Figure 5.6	High grade dysplastic nodule or early HCC	83
Figure 5.7	Dysplastic nodule	84
Figure 5.8	Nodule-in-nodule appearance	86
Figure 5.9	Nodule-in-nodule appearance	87
Figure 5.10	Chart shows the algorithm for evaluating small nodules found at screening in patients at risk for HCC	94
Figure 5.11	Small progressed HCC	99
Figure 5.12	Hepatocellular carcinoma and cirrhosis.	100
Figure 5.13	Hepatocellular carcinoma and cirrhosis.	101
Figure 5.14	Hepatocellular carcinoma.	102
Figure 5.14	Hepatocellular carcinoma.	103
(continued)		103
Figure 5.15	Large HCC	104
Figure 5.16	HCC on DWI acquisition	105
Figure 5.17	Fibrolamellar carcinoma	108
Figure 5.18	Condition mimic hepatic focal lesion, transient arterial	110
Figure 5.18	enhancement	110
Figure 5.19	Confluent fibrosis	112
Figure 5.20	Classic liver hemangioma	114
Figure 5.21	Giant hemangioma	115
Figure 5.22	Typical focal nodular hyperplasia	118
Figure 5.23	Steatotic and telangiectatic adenomas.	121
Figure 5.23	Steatotic and telangiectatic adenomas.	122
(continued)	Stemotic and teranglectatic adenomas.	122
Figure 5.24	Liver metastases from neuroendocrine tumor	124
Figure 5.25	Liver metastases with Gd-EOB-DTPA	125
Figure 5.26	Diffusion-weighted imaging of multiple hepatic metastases	126
Figure 5.27	NRH in a patient with Budd-Chiari syndrome	128
Figure 5.28	Intrahepatic cholangiocarcinoma	130
Figure 5.29	Intrahepatic cholangiocarcinoma post Gd	130
Figure 5.30	Chart illustrates a decision algorithm that can be helpful in evaluating hypervascular liver lesions	131

List of Tables

TABLE 1	SEGMENTAL ANATOMY OF THE LIVER	8
TABLE 2	COMMONLY USED SEQUENCES AND PARAMETERS IN LIVER MR IMAGING	66
TABLE 3	TYPICAL APPEARANCE OF CIRRHOTIC LIVER NODULES AT MR IMAGING	106

List of Abbreviations

2D	Two dimensional
3D	Three dimensional
3D-GRE	Three Dimensional Gradient Recalled Echo
ADC	Apparent diffusion coefficient
AFP	Alpha-fetoprotein
CCA	Cholangiocarcinoma
CNR	contrast to noise ratio
СНА	Common hepatic artery
DWI	Diffusion-weighted imaging
ECF	Extracellular fluid
ETL	Echo train length
FLC	Fibrolamellar carcinoma
FNH	Focal nodular hyperplasia
FOV	Field of vision
FRFSE	Fast recovery FSE
FSE	Fast spin echo
Gd	Gadolinium
Gd-BOPTA	Gadobenate dimeglumine
GRE	Gradient Recalled Echo
HBV	Hepatitis B virus
HCA	Hepatocellular adenoma
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HASTE	Half-Fourier acquisition single-shot turbo spin-echo
Hz	Hertz
IP	In-phase
IVC	Inferior vena cava

MIP	Maximum intensity projection
MDCT	Multi detector CT
NEX	number of excitations
NRH	Nodular regenerative hyperplasia
OP	Out-of-phase
PI	Parallel imaging
PV	Portal vein
RES	Reticuloendothelial system
RF	Radio-frequency
ROI	Region of interest
RT-FSE	Respiratory triggered FSE
SGE	Spoiled gradient echo
SMA	Superior mesenteric artery
SNR	Signal to-Noise Ratio
SPIO	Super Paramagnetic Iron Oxide
SSFSE	Single-shot fast spin-echo
Т	Tesla
TE	Time of Echo
THED	Transient hepatic enhancement difference
TR	Time of Repetition
US	Ultrasound

MR IMAGING OF HYPERVASCULAR LESIONS IN THE CIRRHOTIC LIVER

Essay

Submitted for the partial fulfillment of the master degree in radiodiagnosis

By:

Doaa Fawzy Ibrahim Ismail

M.B.B.C.H.

Supervised By:

Professor Dr. Hossam Abd El Qader Morsy

Professor of Radiodiagnosis, Faculty of Medicine
Ain Shams University

DR. Yasser Abd El Khaleq Ibrahim

Lecturer of Radiodiagnosis, Faculty of Medicine
Ain Shams University

Faculty of medicine
Ain Shams University
2013

Contents

- 1) Introduction and aim of the work.
- 2) Anatomy of the liver.
- 3) Pathophysiologic process of carcinogenesis in cirrhotic liver.
- 4) Technique of MR imaging protocol of the spectrum of hyper vascular lesions in cirrhotic liver.
- 5) MRI features and illustrative cases of hyper vascular lesions in cirrhotic liver.
- 6) Summary and conclusion.
- 7) References.
- 8) Arabic summary.

Introduction

Cirrhosis is characterized by a spectrum of hepatocellular nodules that mark the progression from regenerative nodules to low- and high- grade dysplastic nodules, followed by small and large hepatocellular carcinomas (HCCs). (*Daniella B. Parente et al 2012*)

Vascularity patterns change gradually as the nodules evolve, with an increasing shift from predominantly venous to predominantly arterial perfusion. (*Daniella B. Parente et al 2012*)

Worldwide, HCC is the third most common cause of death from cancer. (*Edwards BK* et al 2010)

The annual incidence of HCC among cirrhotic patients is 2.0%-6.6%, When it is detected after the onset of symptoms, patients with HCC have a dismal prognosis (5-year survival rate, 0%-10%); however, patients with small HCCs may be cured (5-year survival rate, >50%). (Daniella B. Parente et al 2012)

The widespread practice of surveillance, which is recommended for patients with cirrhosis, has increased the number of patients who are diagnosed with early-stage HCC, when curative options may be pursued. (*Bruix J et al 2011*)

As a result of major advancements in field gradient technology and multichannel surface coils, magnetic resonance (MR) imaging is playing an increasingly greater role in the accurate, noninvasive detection and characterization of hepatic lesions. Because MR imaging displays the same lesion contrast enhancement patterns as CT, but with superior lesion-to-liver contrast and without the use of ionizing radiation, In addition, the use of newer pulse sequences. (*Alvin C et al 2009*)

In several studies, including a meta-analysis, the specificities of MR imaging and CT were found to be comparable for depicting HCC in the cirrhotic liver, although other studies have reported that MR imaging has higher sensitivity than CT (81% versus 68%, 70% versus 50%, 77% versus 54%, and 85% versus 68% for MR imaging and CT, respectively). (Daniella B. Parente et al 2012)

Krinsky et al reported that MR imaging is sensitive in only 33% of patients with known HCC before transplantation. When the nodules were stratified by size, the sensitivity of MR imaging was 100% for lesions larger than 2 cm, 52% for 1–2-cm lesions, and only 4% for lesions smaller than 1 cm, findings that illustrate the difficulty in detecting small lesions. (*Krinsky GA et al 2002*)

Although MR imaging usually has higher sensitivity than CT, depicting and characterizing hyper vascular lesions in patients with cirrhosis is challenging at any modality, especially when lesions are small. Differentiating HCC from other hyper vascular lesions is a key step in treating patients and is the responsibility of the radiologist. (*Hanna RF et al 2008*)

of work: To discuss and illust features of frequently	rate the most releva y encountered hyper	nt and common MR im r vascular liver lesions.	aging

Chapter One Introduction

Chapter (1): Introduction

Cirrhosis is characterized by a spectrum of hepatocellular nodules that mark the progression from regenerative nodules to low- and high- grade dysplastic nodules, followed by small and large hepatocellular carcinomas (HCCs).

(Parente et al 2012)

Vascularity patterns change gradually as the nodules evolve, with an increasing shift from predominantly venous to predominantly arterial perfusion.

(Parente et al 2012)

Worldwide, HCC is the third most common cause of death from cancer.

(Edwards et al 2010)

The annual incidence of HCC among cirrhotic patients is 2.0%-6.6%, When it is detected after the onset of symptoms, patients with HCC have a dismal prognosis (5- year survival rate, 0%-10%); however, patients with small HCCs may be cured (5- year survival rate, >50%). (*Parente et al 2012*)

The widespread practice of surveillance, which is recommended for patients with cirrhosis, has increased the number of patients who are diagnosed with early-stage HCC, when curative options may be pursued. (*Bruix et al 2011*)