

Phytochemical and Biological Evaluation of Certain Traditional Hepatoprotective Plants

A THESIS

Submitted for partial fulfillment of the requirements for master degree in Pharmaceutical Sciences

(Pharmacognosy)

Noha Mostafa Fathallah

BSc. Pharmaceutical Sciences, Faculty of Pharmacy, Cairo University (2008)

Under the Supervision of

Prof. Dr. Abdel-Nasser Badawy Singab

Dean of Faculty of Pharmacy, Ain Shams University, Professor of Pharmacognosy

Prof. Dr. Osama Mostafa Salama

Vice President, Future University Professor of Pharmacognosy

Dr. Mokhtar Mohamed Bishr,

Plant General Manager and Technical Director, Arab Company for Pharm. and Medicinal Plants Mepaco

> Pharmacognosy Department Faculty of Pharmacy Ain Shams University 2016

Approval sheet

Thesis entitled: Phytochemical and Biological Evaluation of Certain Traditional Hepatoprotective Plants.

Candidate: Noha Mostafa Fathallah	
Approved by:	
Prof. Dr. Abdel-Nasser Badawy Singab	Prof. Dr. Osama Mostafa Salama
Professor of Pharmacognosy.	Professor of Pharmacognosy.
Dean of Faculty of Pharmacy Ain Shams University.	Vice President Future University.
Prof. Dr. Fathi Kandeel M. El Feky	Associate Prof. Dr. M. Mahmoud El Shazly
Professor of Pharmacognosy.	Associate Professor of Pharmacognosy.
Faculty of Pharmacy	Faculty of Pharmacy
Alexandria University.	Ain Shams University.

Examining date:

Acknowledgements

Thanks to Allah, the source of all knowledge by whose abundant grace this work has come to fruition. With a lot of gratitude and appreciation, I wish to express my thanks to all those who helped in making this work possible.

I wish to express my appreciation and sincere gratitude to *Prof. Dr. Osama Mostafa Salama*, Professor of Pharmacognosy, Vice President, Future University, for suggesting the research point, indispensable advice and encouragement from the beginning of this work.

I would like to express my deep everlasting gratitude to *Prof. Dr. Abdel-Nasser Badawy Singab*, Professor of Pharmacognosy and the Dean of Faculty of Pharmacy-Ain Shams University, for supervision, fruitful advice, unlimited help, and for his effort in the presentation of this work.

Thanks and appreciation for *Dr. Mokhtar Bishr*, Plant General Manager and Technical Director, Arab Company for Pharm. and Medicinal Plants, for his constant valuable guidance, supervision and his effort in revising the thesis and presentation of this work.

I am grateful to *Prof. Dr. Farid Badria*, professor of pharmacognosy, Faculty of Pharmacy, Mansoura University, for performing the biological studies with great patience and sincere interest.

Special thanks and appreciation to *Dr. Wafaa El Kady* and all my colleagues in the department for their valuable advices and co-operation.

I would like to thank **my dear husband** for his continuous encouragement, support and patience.

Words are not enough to express my hearty gratitude, sincere appreciation and indebtedness to my great **mother**, **father and brother** for their great care, surveillance, affection, and love. They played a special role in my life. I owe them my life and success. May Allah make their life full of happiness and joy.

Contents

Contents

	Page
- List of Figures	9
- List of Tables	15
- List of Abbreviations	17
- General Introduction	20
- Materials, Apparatuses and Techniques:	22
I- Materials	22
II- Apparatuses and equipments	25
III- Techniques	26
- Aim of Work	30
Part 1	
Cichorium intybus, L. Seeds	
- Introduction	33
Chapter one:	
- Taxonomy and review of literature	
I- Taxonomy	35
II- Review of literature	42
III- Pharmacological activities	53
Chapter two:	
- Phytochemical investigation of Cichorium intybus, L.	57
A- Investigation of Cichorium intybus, L. seeds lipoidal matter:	58
• Separation of the lipoid matter of the seeds extract of Cichorium intybus	s, 59
L.	
I- Unsaponifiable Matters	63
- Identification of Compound C1	

- Identification of Compound C2	73
II- Fatty acids methyl esters	74
B- Investigation of Cichorium intybus, L. defatted powder:	75
• Separation and Identification of compounds	76
- Compound C3	82
- Compound C4	89
- Compound C5	97
- Compound C6	107
- Compound C7	112
Chapter Three:	
- Biological evaluation of Cichorium intybus, L. seeds	118
I-Biological evaluation.	119
II-Histopathological evaluation.	125
Part two:	
Cassia tora, L. seeds:	
- Introduction	139
Chapter one:	
- Taxonomy and review of literature	141
I- Taxonomy	142
II- Review of literature	149
III- Pharmacological activities	154

Chapter two:

- Phytochemical investigation of Cassia tora, L. seeds	158
A- Investigation of Cassia tora, L. seeds lipoid matter:	159
• Separation of the lipoid matter of Cassia tora, L. seeds	160
Unsaponifiable Matters	163
- Compound Ca 1	163
- Compound Ca 2	164
II- Fatty acids methyl esters	165
B- Investigation of Cassia tora, L. defatted powder:	169
Separation and Identification of compounds	170
- Compound Ca 3	177
- Compound Ca 4	180
- Compound Ca 5	183
- Compound Ca 6	186
- Compound Ca 7	189
- Compound Ca 8	192
- Compound Ca 9	195
- Compound Ca 10	198
Chapter Three:	
- Biological evaluation of <i>Cassia tora</i> , L. seeds.	200
I- Biological evaluation.	201
II- Histopathological evaluation.	207
Summary	220
Recommendation	229
References	231
Arabic summary	•

List of figures:

No	Figure	Page
1	Photo of <i>C. intybus</i> , L. Herb.	38
2	Photo of <i>C. intybus</i> , L. Flower.	38
3	Photo of <i>C. intybus</i> , L. Seeds.	39
4	Flow Chart of Separation of the Lipoid Matter from C. intybus, L. Seeds.	62
5	¹ H-NMR spectrum of compound C2 Lupeol.	67
6	¹ H-NMR magnification of compound C2 Lupeol.	68
7	¹³ C-NMR spectrum of compound C2 Lupeol	69
8	HMBC spectrum of compound C2 Lupeol.	70
9	COSY spectrum of compound C2 Lupeol.	71
10	MS spectrum of compound C2 Lupeol.	72
11	MS fragmentation pattern of compound C2 Lupeol.	72
12	Fractionation Flow Chart of <i>C. intybus</i> L. seeds alcoholic extract.	79
13	Fractionation Flow Chart of <i>C. intybus</i> L. seeds chloroform fraction.	80
14	Fractionation Flow Chart of <i>C. intybus</i> L. seeds ethyl acetate fraction.	81
15	¹ H-NMR spectrum of compound C3 Cichoriolide.	84
16	¹³ C-NMR spectrum of compound C3 Cichoriolide.	85

17	¹³ C-NMR spectrum magnification of compound C3 Cichoriolide.	86
18	Mass spectrum of compound C3 Cichoriolide.	87
19	IR spectrum of compound C3 Cichoriolide.	88
20	¹ H-NMR spectrum of compound C4 Lupeolyl arabinoside.	92
21	¹ H-NMR magnification of compound C4 Lupeolyl arabinoside.	93
22	¹³ C-NMR spectrum of compound C4 Lupeolyl arabinoside.	94
23	¹³ C-NMR spectrum magnification of compound C4 Lupeolyl arabinoside.	95
24	MS spectrum of compound C4 Lupeolyl arabinoside aglycone part	96
25	Fragmentation pattern of compound C4 Lupeolyl arabinoside.	96
26	¹ H-NMR spectrum of compound C5 β-Sitosterol 3-O-β-D-glucopyranoside.	100
27	¹ H-NMR magnification of compound C5 β-Sitosterol 3-O-β-D-	101
28	glucopyranoside. ¹ H-NMR magnification of compound C5 β-Sitosterol 3-O-β-D-glucopyranoside.	102
29	COSY spectrum of compound C5 β-Sitosterol 3-O-β-D-glucopyranoside.	103
30	¹³ C-NMR spectrum of compound C5 β-Sitosterol 3-O-β-D-glucopyranoside.	104
31	HSQC spectrum of compound C5 β-Sitosterol 3-O-β-D-glucopyranoside.	105
32	IR spectrum of compound C5 β -Sitosterol 3-O- β -D-glucopyranoside.	106
33	UV spectrum of compound C6 Caffeic acid.	109

34	¹ H-NMR spectrum of compound C6 Caffeic acid.	110
35	¹ H-NMR magnification spectrum of compound C6 Caffeic acid.	111
36	¹ H-NMR spectrum of compound C7 Chlorogenic acid.	114
37	¹ H-NMR magnification spectrum of compound C7 Chlorogenic acid.	115
38	¹³ C-NMR spectrum of compound C7 Chlorogenic acid.	116
39	¹³ C-NMR magnification spectrum of compound C7 Chlorogenic acid.	117
40	Hepatoprotective activity of CIT, CID and silymarin on serum ALT/GPT in liver damaged rats by CCl ₄ .	132
41	Hepatoprotective activity of CIT, CID and silymarin on serum AST/GOT in liver damaged rats by CCl ₄ .	133
42	Hepatoprotective activity of CIT, CID and silymarin on serum Albumin in liver damaged rats by CCl ₄	134
43	Hepatoprotective activity of CIT, CID and silymarin on serum Platelets count (10 ⁹ /L) in liver damaged rats by CCl ₄	135
44	 Histopathological evaluation of hepatocytes using Haematoxylineosin: 44a Normal control liver cells (hepatocyte) stained with haematoxylineosin 44b Effect of CCl₄ on the hepatocytes stained with Haematoxylineosin 44c Effect of standard drug silymarin on hepatocytes stained with Haematoxylineosin 44d Effect of the CIT on the hepatocytes stained with Haematoxylineosin 	136
45	 44e Effect of the CID on the hepatocytes stained with Haematoxylineosin Histopathological evaluation of hepatocytes using Masson's trichrome Stain: 45a Normal control liver cells (hepatocyte) stained with Masson's trichrome stain. 	137

- 45b Effect of CCl₄ on the hepatocytes stained with Masson's trichrome stain.
- 45c Effect of standard drug silymarin on hepatocytes stained with Masson's trichrome stain.
- 45d Effect of the CIT on the hepatocytes stained with Masson's trichrome stain.
- 45e Effect of the CID on the hepatocytes stained with Masson's trichrome stain.
- Photo of *C. tora*, L. herb. Photo of *C. tora*, L. pods. Photo of *C. tora*, L. seeds. Flow Chart for Separation of the Lipoid Matter from C. tora, L. seeds Fractionation Flow Chart of *C. tora*, L. Seeds Alcohol Extract GC-MS chromatogram for Cassia tora, L ethyl acetate fraction. LC-MS chromatogram for *Cassia tora*, L ethyl acetate fraction. Mass spectrum of compound Ca 3 Chrysophanol. Fragmentation pattern compound Ca 3 Chrysophanol. Ms spectrum of compound Ca 3 Chrysophanol. Mass spectrum of compound Ca 4 Chrysarobin. Fragmentation pattern compound Ca 4 Chrysarobin. Ms spectrum of compound Ca 4 Chrysarobin. Mass spectrum of compound Ca 5 10-hydroxy-5-methoxy-2-methyl-1, 4-anthracenedione.

60	Fragmentation pattern of compound Ca 5 10-hydroxy-5-methoxy-2-methyl-	184
	1, 4-anthracenedione.	
61	Ms spectrum of compound Ca 5 10-hydroxy-5-methoxy-2-methyl-1, 4-	185
	anthracenedione.	
62	Mass spectrum of compound of Ca 6 Rubrofusarin.	187
63	Fragmentation pattern of compound Ca 6 Rubrofusarin.	187
64	Ms spectrum of compound Ca 6 Rubrofusarin.	188
65	Mass spectrum of compound Ca 7 Parietin.	190
66	Fragmentation pattern of compound Ca 7 Parietin.	190
67	Ms spectrum of compound Ca 7 Parietin.	191
68	Mass spectrum of compound Ca 8 Griseoxanthone-B.	193
69	Fragmentation pattern of compound Ca 8 Griseoxanthone-B.	193
70	Ms spectrum of compound Ca 8 Griseoxanthone-B.	194
71	Mass spectrum of compound Ca 9 Isotorachrysone.	196
72	Fragmentation pattern of compound Ca 9 Isotorachrysone.	196
73	Ms spectrum of compound Ca 9 Isotorachrysone.	197
74	Mass spectrum of compound Ca 10 Cumbiasin B.	199
75	Fragmentation pattern of compound Ca 10 Cumbiasin B.	199
76	Hepatoprotective activity of CTT, CTD and silymarin on serum ALT/GPT	214
	in liver damaged rats by CCl ₄ .	

77	Hepatoprotective activity of CTT, CTD and silymarin on serum AST/GOT	215
	in liver damaged rats by CCl ₄ .	
78	Hepatoprotective activity of CTT, CTD and silymarin on serum albumin in	216
	liver damaged rats by CCl ₄ .	
79	Hepatoprotective activity of CTT, CTD and silymarin on Platelets count in	217
	liver damaged rats by CCl ₄ .	
80	Histopathological evaluation of hepatocytes using Haematoxylineosin:	218
	80a Normal control liver cells (hepatocyte) stained with haematoxylineosin	
	• 80b Effect of CCl ₄ on the hepatocytes stained with Haematoxylineosin	
	• 80c Effect of standard drug silymarin on hepatocytes stained with	
	Haematoxylineosin	
	• 80d Effect of the CTT on the hepatocytes stained with Haematoxylineosin	
	• 80e Effect of the CTD on the hepatocytes stained with Haematoxylineosin	
81	 Histopathological evaluation of hepatocytes using Masson's trichrome Stain: 81a Normal control liver cells (hepatocyte) stained with Masson's trichrome stain. 	219
	• 81b Effect of CCl ₄ on the hepatocytes stained with Masson's trichrome stain.	
	 81c Effect of standard drug silymarin on hepatocytes stained with Masson's trichrome stain. 	
	• 81d Effect of the CTT on the hepatocytes stained with Masson's trichrome stain.	
	• 81e Effect of the CTD on the hepatocytes stained with Masson's trichrome stain.	

No	<u>List of tables</u>	page
1	GC-MS analysis of fatty acids methyl esters of C. intybus, L. Seeds	73
2	Number of dead animals in experiment.	121
3	GPT levels (Tukey's multiple comparison test results)	123
4	GOT levels (Tukey's multiple comparison test results)	123
5	Albumin levels (Tukey's multiple comparison test results)	124
6	Platelets levels (Tukey's multiple comparison test results)	124
7	Effect of total, defatted extracts of <i>C. intybus</i> , <i>L.</i> seeds and silymarin drug on serum enzymes level (ALT) GPT, IU/L in liver damaged rats (n=6)	128
8	Effect of total, defatted extracts of <i>C.intybus</i> , L. seeds and silymarin drug on serum enzymes level (AST) GOT, IU/L in liver damaged rats (n=6)	129
9	effect of total, defatted extracts of <i>C.intybus</i> , L. seeds and silymarin drug on serum Albumin levels g/dl in liver damaged rats.(n=6)	130
10	effect of total, defatted extracts of <i>C. intybus</i> , L. seeds and silymarin drug on Platelets count 10 ⁹ /L in liver damaged rats.(n=6)	131
11	GC-MS analysis of fatty acids methyl esters of <i>C. tora</i> , L. seeds.	165
12	Peak report of GC-MS for C. tora, L. ethyl acetate fraction.	174
13	Peak report of LC-MS for C. tora, L. ethyl acetate fraction.	176
14	Number of dead animals during experiment	202
15	GPT levels (Tukey's multiple comparison test results)	204