HYDROLOGIC MODELING AND ENVIRONMENTAL MANAGEMENT OF GROUNDWATER RESOURCES WADI EL FARIGH AREA EGYPT

Submitted By

Mona Mohamed Mostafa Omar

B. Sc. of Pure Math. & Computer Sciences, Faculty of Sciences, Ain Shams University, 1990
 Master in Environmental Sciences, Institute of Environmental Studies and Research,
 Ain Shams University, 2011

A thesis submitted in Partial Fulfillment

of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Science

Department of Environmental Basic Science
Institute of Environmental Studies and Research
Ain Shams University

2017

APPROVAL SHEET

HYDROLOGIC MODELING AND ENVIRONMENTAL MANAGEMENT OF GROUNDWATER RESOURCES WADI EL FARIGH AREA EGYPT

Submitted By

Mona Mohamed Mostafa Omar

B.Sc.of Pure Math. & Computer Sciences, Faculty of Sciences, Ain Shams University, 1990
 Master in Environmental Science, Institute of Environmental Studies and Research,

Ain Shams University, 2011

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

in

Environmental Science

Department of Environmental Basic Sciences

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science has been approved by :

Name	Signature
1. Prof. Dr. Ahmed El Amin Mohamed El Nimr	••••
Prof. Of hydrology	
Faculty of Engineering, Mansoura University	
2. Prof. Dr. Mohamed Gharib El-Malky .	•••••
Prop of Environmental Geophysics	
Institute of Environmental Studies and Research	ch,
Ain Shams University	
3. Prof. Dr. Ezzat Ali Korany	•••••
Prof. Of hydrogeology, Department of Geology	
Faculty of Science, Ain Shams University	
4. Prof. Dr. Ibrahim Hassan Himida	•••••
Prof. Of hydrology	
Hydrology Department, Desert Research Center	

HYDROLOGIC MODELING AND ENVIRONMENTAL MANAGEMENT OF GROUNDWATER RESOURCES WADI EL FARIGH AREA EGYPT

Submitted By

Mona Mohamed Mostafa Omar

 B.Sc. of Pure Math. & Computer Sciences, Ain Shams University 1990
 Master in Enironmental Sciences, Institute of Enironmental Studies and Research, Ain Shams University 2011

A thesis submitted of Partial Fulfillment
Of
The Requirement for the Doctor of Philosphy Degree
In
Environmental Science
Department of Environmental Basic Science

Under the Supervision of

1. Prof. Dr. Ezzat Ali Korany

Prof. Of hydrogeology, Department of Geology Faculty of Science, Ain Shams University

2. Prof. Dr. Ibrahim Hassan Himida

Prof. Of hydrology Hydrology Department, Desert Research Center

3. Prof. Dr. Yehia Loutfy Ismail

Prof.& Head Of hydrology Department Hydrology Department, Desert Research Center

4. Dr. Samah Mahmoud Morsy

Lecturer of hydrogeology, Department of Geology Faculty of Science, Ain Shams University

TO

My Father, Mother, Husband, daughter and sons,

Asmaa, Ahmed and Hazem

Acknowledgement

Praise to GOD, lord of the world, by the grace of whom implementation of this word was possible.

The author would like to express her greatest and deepest gratitude to **Prof. Dr. Ezzat Ali Korany,** for supervising this work, giving me a lot of his experience, time, effort and creative suggestions during all stages of this thesis, and thorough revision of manuscript.

Heartfelt thanks to **Prof. Dr. Ibrahim Hassan Himida**, for his continuous supervision during the whole time of the current work, giving me a lot of his experience, fruitful suggestions, critical reading of the manuscript and continuous encouragement and help, which are much appreciated.

I am deeply indebted with greatest thank to **Prof. Dr. Yehia Loutfy Ismail,** for supervising this work, the effective help in pumping tests calculations, help in infiltration tests with calculations and field work, continuous advising during this work and continuous encouragement.

Many warmest thanks are due to **Dr. Samah Mahmoud Morsy,** for useful advice and guidance during the supervision of this work.

Many thanks are due to **Dr. Ezz El Din El Tablawi**, for his great help in the mathematical model development and continuous encouragement.

Special thanks for **Prof. Dr. Mohamed Abdellah Khaled** and geologist **Ahmed Abd El Malek Salem** for providing technical help in the lithology of some wells. Thanks are extended to Mr. **Ibrahim Sobhy** for his sincere help in the field trips.

Finally, I 'wish to be expressed my gratitude and appreciation to my family for their patience and continuous encouragement.

ABSTRACT

Wadi El Farigh area is considered as one of the most important areas in the North of the Western Desert of Egypt. It depends on groundwater of Lower Miocene aquifer as the main source for agricultural and human resources development. However, due to an imbalance of groundwater regime in lower Miocene aquifer, the current study has been conducted. The minimum and maximum temperature, average relative humidity, wind speed, precipitation, degree of aridity and evaporation are estimated. Also, a calculation of groundwater recharge and groundwater extraction rates was carried out, as well as the determination of the groundwater movement and evapotranspiration estimation of the planted areas using known scientific methods.

The main goals are to protect and manage the groundwater resources in the Lower Miocene aquifer in the studied area, and to prevent the lowering in the groundwater level which may lead to deterioration in groundwater quality. These goals are attained by developing a mathematical model that represents the hydrogeological conditions of the area through which thirteen scenarios are conducted for predicting the hydrological situations at different hydrological stresses in the next ten and twenty years. The obtained results indicate that

the hydraulic conductivity varies from 0.1 m/day to 25 m/day, the transmissivity coefficient varies between 1000 m²/day to 7000 m²/day, and the specific yield varies from 0.011 to 0.32. In the current study, the amount of groundwater extracted from the Lower Miocene aquifer in the studied area as well as the loss in the amount of groundwater storage were estimated during a hydrological year and for the next ten and twenty years

Some alternative investment plans of groundwater resources in the area, other than the current situation were proposed to predict future environmental situation in case of further development in the studied area. The scenario representing a discharge rate amounts to 98.83×10^6 m³/year has been chosen to be the best scenario for investment. It represents a total amount of groundwater extraction from the Lower Miocene aquifer in the studied area which is nearly equals the safe yield of the groundwater extraction $(97.73\times10^6 \text{ m}^3/\text{year})$. The scenario that represents a discharge rate amounts to 289.35×10^6 m³/year has been chosen to be the worst scenario for investment. It shows an example of bad exploitation plans of the groundwater resources in the area, where environmental damages may result from such destructive strategies.

CONTENTS

SUBJECT	PAGE
List of Tables	i
List of Figures	iv
INTRODUCTION	
General Outline	1
Objectives of the research	2
Materials and Methods	4
Review of Previous Works	6
CHAPTER (I): GEOMORPHOLOGICAL AND GEOLOGICAL ASPECTS	AL
Introduction	18
Geomorphological characteristics	19
1. The alluvial plains	19
a) The old alluvial plains	19
b) The young alluvial plains	21
2. Structural landform	22
2.1 Structural depressions	22
a) Wadi El Farigh depression	23
b) Wadi El Natrun depression	24
c) Wadi El Tarfaya depression	25
d) Wadi Abu Melha depression	25
2.2 Structural ridges	26
a) Gabel El Hadid rigde	26
b) El Qantara and El Washika rigdes	27
c) Gabel Hamza rigde	28
d) Gabel Dahr El Tashaasha and Gabel Khashm El Kaoud ridg	
3. The tablelands	29
Geological characteristies	29
1. Oligocene deposits	31
2. Miocene deposits	31
3. Pliocene deposits	32
4. Pleistocene deposits	33
Geological structures	33
a) Wadi El Farigh anticline	33
b) Wadi El Natrun anticline	35
c) Wadi El Tarfaya anticline	35
d) Gabel El Qantara and Qar zabada synctines	36
e) Faults of Wadi El Farigh	36
f) Faults bounding south Wadi El Farigh	36

g) Gabel Hamza fault	37
h) Faults bounding Wadi El Natrun	37
i) Faults to the East of Gabel El Qantara	38
Geological history	39
CHAPTER (II):, SURFACE HYDROLOGY	
Climatic Conditions	44
1. Air temperature	48
2. Relative Humidity	51
3. Wind Speed	51
4. Precipitation	51
5. Degree of Aridity	57
6. Evaporation (E ₀)	59
7. Evaportranspiration (ET)	62
7.1 Actual evaportranspiration (AE _t)	63
7.2 Potential evaportranspiration (Et ₀)	63
Soil infiltration	65
1. Infiltration tests analysis	69
CHAPTER (III): GROUNDWATER HYROLOGY	
General outline	77
Aquifer system	79
Hydraulic parameters of the aquifer	84
Groundwater movement	90
Groundwater recharge	95
Estimation of groundwater extraction	99
CHAPTER (IV): GROUNDWATER FLOW MODELING	
The model data requirements	104
Mathematical background	106
Conceptual models	108
Model design	110
1. Building the grid system	110
2. Boundary conditions	112
a) Vertical boundary	113
b) Horizontal boundary	113
3. Building the water system	115
3.1 Initial inputs	115
3.2 External hydrological stresses	117
4. Model calibration and processing	117
4.1 Model calibration for the steady state	118
4.2 Model calibration for the unsteady state	123

5. Results of the calibration	123
5.1 Hydraulic parameters	125
5.1.1 Hydraulic conductivity (K)	125
5.1.2 Specific yield (Sy)	125
5.1.3 Transmissivity coefficient (T)	125
5.1.4 Diffusivity coefficient (A)	128
CHAPTER (V): GROUNDWATER MANAGEMENT	
Water Balance	131
1. Present Situation	132
2. Prediction of the Hydrological Situation	134
2.1 First Scenario	134
2.2 Second Scenario	137
2.3 Third Scenario	142
2.4 Fourth Scenario	147
2.5 Fifth Scenario	151
2.6 Sixth Scenario	156
2.7 Seventh Scenario	161
Scenarios for Proposed Future Development	163
1. Eighth Scenario	165
2. Ninth Scenario	170
3. Tenth Scenario	175
4. Eleventh Scenario	180
5. Twelfth Scenario	184
6. Thirteenth Scenario	189
Summary of Scenarios Results	194
CONCLUSIONS AND RECOMENATIONS	197
REFERNCES	205
APPENDIX I	220
APPENDIX II	224
APPENDIX III	238
ARABIC SUMMARY	

LIST OF TABLES

Pag	ge
Table (1): Climatic Data at Different Meteorological Stations,	
,	45
9 7 90 1	52
•	58
Table (4): Calculated AE _t of the irrigated crops, Wadi El Farigh	
	66
Table (5): Calculated Et ₀ of the irrigated crops, Wadi El Farigh	
area, Egypt (for the year 2013)	68
Table (6): Measurements of infiltration rates and hydraulic	
conductivity coefficients and soil classification in the	
studied area, Wadi El Farigh area, Egypt	
(According to O' Neal, 1952)	74
Table (7): The Hydraulic parameters of the Lower Miocene	
aquifer, Wadi El Farigh area, Egypt 8	39
Table (8): Net Groundwater Recharge to the Lower Miocen	
aquifer for the year (2013), Wadi El Farigh area,	
O/ 1	1
Table (9): Field measurements and predicted groundwater level,	
for the period(April 2013 – April 2014), Wadi	
El Farigh area, Egypt 12	20
Table (10): The Monthly Water Balance of the Lower Miocene	
aquifer for the period from April 2013 - April 2014	
$((10)^3 \text{ m}^3 / \text{month})$, the frist scenario, Wadi El Farigh	
area, Egypt 1	35
Table (11): The Water Balance of the Lower Miocene Aquifer for	
The period from April 2013 - April 2014 $((10)^6 \text{ m}^3 / \text{yea})$	
, , , ,	36
Table (12): The Water Balance of the Lower Miocene Aquifer for	
the period from April 2023 - April 2024 ((10) ⁶ m ³ /year)	
the second scenario, Wadi El Farigh area, Egypt 1	38
Table (13): The Monthly Water Balance of the Lower Miocene	
aquifer for the period from April 2023 - April 2024,	
((10) ³ m ³ /month) the second scenario, Wadi El Farigh	
area, Egypt 1	38
Table (14): The Water Balance of the Lower Miocene Aquifer for	
the period from April 2014 - April 2034 $((10)^6 \text{ m}^3 / \text{year})$	
the third scenario, Wadi El Farigh area, Egypt 1	44

Table (15): The Monthly Water Balance of the Lower Miocene
aquifer for the period from April 2033 - April 2034
((10) ³ m ³ / month), the third scenario, Wadi El Farigh
area, Egypt144
Table (16): The Water Balance of the Lower Miocene Aquifer for
a hydrological year $((10)^6 \text{ m}^3 / \text{year})$, the fourth scenario,
Wadi El Farigh area, Egypt 147
Table (17): The Monthly Water Balance of the Lower Miocene
aquifer for a hydrological year ((10) ³ m ³ / month),
the fourth scenario, Wadi El Farigh area, Egypt 148
Table (18): The Water Balance of the Lower Miocene Aquifer for
ten years prediction $((10)^6 \text{ m}^3/\text{ year})$, the fifth scenario,
Wadi El Farigh area, Egypt 152
Table (19): The Monthly Water Balance of the Lower Miocene
aquifer for ten years prediction $((10)^3 \text{ m}^3 / \text{month})$,
the fifth scenario, Wadi El Farigh area, Egypt 152
Table (20): The Water Balance of the Lower Miocene Aquifer for
twenty years prediction $((10)^6 \text{ m}^3/\text{year})$, the sixth
scenario, Wadi El Farigh area, Egypt
Table (21): The Monthly Water Balance of the Lower Miocene
aquifer for the period from April 2033 - April 2034
$((10)^3 \text{ m}^3 / \text{month})$, the sixth scenario, Wadi El Farigh
area, Egypt
Table (22): The Monthly Water Balance of the Lower Miocene
aquifer for a hydrological year ((10) ³ m ³ / month),
the seventh scenario, Wadi El Farigh area, Egypt 161
Table (23): The Water Balance of the Lower Miocene Aquifer for
a hydrological year $((10)^6 \text{ m}^3/\text{year})$, the seventh
scenario, Wadi El Farigh area, Egypt
, SV 1
Table (24): The Water Balance of the Lower Miocene Aquifer for a hydrological year ((10) ⁶ m ³ / year), the eighth
scenario, Wadi El Farigh area, Egypt
Table (25): The Monthly Water Balance of the Lower Miocene
aquifer for a hydrological year ((10) ³ m ³ / month),
the eighth scenario, Wadi El Farigh area, Egypt 167
Table (26): The Water Balance of the Lower Miocene Aquifer for
ten years prediction $((10)^6 \text{ m}^3 / \text{year})$, the ninth scenario,
Wadi El Farigh area, Egypt 171
Table (27): The Monthly Water Balance of the Lower Miocene
aquifer for ten years prediction ((10) ³ m ³ / month),
the ninth scenario, Wadi El Farigh area, Egypt 171
Table (28): The Water Balance of the Lower Miocene Aquifer for

twenty years prediction $((10)^6 \text{ m}^3 / \text{year})$, the tenth
scenario, Wadi El Farigh area, Egypt 176
Table (29): The Monthly Water Balance of the Lower Miocene
aquifer for twenty years prediction $((10)^3 \text{ m}^3 / \text{month})$,
the ninth scenario, Wadi El Farigh area, Egypt 176
Table (30): The Water Balance of the Lower Miocene Aquifer for
a hydrological year $((10)^6 \text{ m}^3 / \text{year})$, the eleventh
scenario, Wadi El Farigh area, Egypt 180
Table (31): The Monthly Water Balance of the Lower Miocene
aquifer for a hydrological year $((10)^3 \text{ m}^3 / \text{month})$,
the eleventh scenario, Wadi El Farigh area, Egypt 181
Table (32): The Water Balance of the Lower Miocene Aquifer for
ten years prediction $((10)^6 \text{ m}^3 / \text{year})$, the twelfth
scenario, Wadi El Farigh area, Egypt 185
Table (33): The Monthly Water Balance of the Lower Miocene
aquifer for ten years prediction $((10)^3 \text{ m}^3 / \text{month})$,
the twelfth scenario, Wadi El Farigh area, Egypt 185
Table (34): The Water Balance of the Lower Miocene Aquifer for
twenty years prediction $((10)^6 \text{ m}^3 / \text{year})$, the thirteenth
scenario, Wadi El Farigh area, Egypt 190
Table (35): The Monthly Water Balance of the Lower Miocene
aquifer for twenty years prediction $((10)^3 \text{ m}^3 / \text{month})$,
the thirteenth scenario, Wadi El Farigh area, Egypt 190
Table (36): Summary of scenario results, Wadi El Farigh area,
Egypt 194

LIST OF FIGURES

	Page
Fig. (1): Location map of Wadi El Farigh area, North Western	_
Desert, Egypt	3
Fig. (2): Geomorphological map of the studied area, (Copied	20
from Moselhy, 2005)	20
Fig. (3): Geological map of the studied area, (Conoco Coral,	20
Egypt, 1987)	30
Fig. (4): Geological structure map, Wadi El Farigh area,	24
(Conoco Coral, Egypt, 1987)	34
Fig. (5): Mean monthly minimum and maximum air temperature, Wadi El Farigh area, Egypt	49
Fig. (6): Mean monthly rainfall, Wadi El Farigh area, Egypt	54
Fig. (7): Isohytial Map, Wadi El Farigh area, Egypt (mm/year)	34
(yearly rainfall intensty for the average year)	56
Fig. (8): Piche evaporation rate map, Wadi El Farigh area,	30
Egypt (mm/year) (yearly intensty of evaporation)	60
Fig. (9): Mean monthly evaporation rate, Wadi El Farigh	UU
area, Egypt	61
Fig. (10): Double Ring Infiltration	
Fig. (11): Location map of infiltration tests, Wadi El Farigh	
area, Egypt	70
Fig. (12): Rerpesentative infiltration tests, Wadi El Farigh	
area, Egypt	75
Fig. (13): Zonation map of soil hydraulic conductivity of the stud	died
area, Wadi El Farigh area, Egypt	
Fig. (14): Well Location Map of Lower Miocene aquifer, Wadi	
El Farigh area, Egypt	78
Fig. (15): Hydrogeological Cross Section A – A', Wadi El Farigh	<u>l</u>
area, Egypt	. 82
Fig. (16): Hydrogeological Cross Section D – D', Wadi El Farigh	l
area, Egypt	. 82
Fig. (17): Hydrogeological Cross Section C – C', Wadi El Farigh	1
area, Egypt	83
Fig. (18): Hydrogeological Cross Section B – B', Wadi El Farigh	
area, Egypt	83
Fig. (19): Illustration of a time – drawdown curve for use with	
the modified Theis equation (Bras, 1990), Wadi	
El Farigh area, Egypt	. 86