

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠ منوية ورطوية نسبية من ٢٥-١٥ لمنافلا المنافلات المناف

بعض الوثائـــق الاصلبــة تالفــة

بالرسالة صفحات لم ترد بالاصل

A New Parallel Thinning Algorithm For Gray Scale Images

A Thesis Submitted to the Faculty of Science,
Cairo University in Fullfilment of the
Requirements for the Degree of Ph.D. in
Computer Science

By
Samira Saad Mohamed Mersal

Supervisors

Prof. Laila M. Abd Elaal

Prof. Ahmed M. Darwish

Mathematics Department

Computer Engineering Department

Faculty of Science

Faculty of Engineering

Cairo University

Cairo University

Cairo University

Faculty of Science

2000

Abstract

A new parallel thinning algorithm for gray scale images is proposed. The algorithm is based on repeated application of removal operation which erodes gray scale image until only a one pixel thick subset is obtained. The removing operation is applied to all pixels in the image in parallel. A small neighborhood binarization is considered for every pixel. The set of pixels which satisfy certain conditions is removed. The conditions guarantee that the resulting thinned version is connected. Two types of removal operations are considered. Restricted removal and unrestricted removal to guarantee that the resulting thinned version is located along the center of the ridges where they exist. The algorithm can process simple gray scale images (images do not contain hollows surrounded by ridge lines) as well as images that contain hollows. A hollow at elevation k is a flat region such that a path from any pixel in the region to a pixel not in the region must include at least one pixel having a value greater than k. Thinning images which contain hollows are accomplished by using a hollow detection procedure which converts an interior pixel into a border pixel so as to render it a candidiate for removal. The algorithm was tested using three groups of images, 40 chromosomes images, 24 actinomyces images and 6 text and Different tuning parameters were used in the tests. graph like images. parameters are the number of smoothing iterations, the percentage of edge pixels used in the hollow detection procedure, the type of removal operation which may be restricted or unrestricted and whether the image is segmented (into background with zero value and objects with positive value) or not. The results showed that with the proper selection of the tuning parameters the algorithm is a powerful tool that could be used for image analysis applications.

اعود بالله مه الميمام الرجيم " رب اوزغف ١١١ ١ شكر نغيلك التي المعمت على

وعلى والدئ واله اعمل حالحاً ترحناه وأصلح لح غ ذريت إن تبت إليك والحن مد السليم"

Acknowledgement

Aknowledgement

I am happy to take this opportunity to thank many people who helped me during the preparation of this thesis.

I would like to express my appreciation, gratitude and thanks to Dr. Ahmed M. Darwish, Professor of Computer Engineering for his helpful guidance, illuminating remarks, encouragement and kind supervision of this thesis. I am really indebted to him.

My deepest gratitude and thanks go to Dr. Laila M. Abd Elaal, Professor of Mathematics for her encouragement, support and valuable advice.

I would also like to thank Dr. Yomin M. Mobarak, Lecturer at Zoology Department, Faculty of Science, Suez Canal University for his help in providing me with mice chromosomes images.

And finally no words are enough to thank my family for their generosity, patience, warmth and love.

Contents

Chapter 1. Introduction	
1.1 Motivation and Justification	
1.2 Thinning and Skeletonization	,
1.3 Problem Definition and Summary of Approach	i
1.4 Thesis Overview	
Chapter 2: Thinning Algorithms for Binary Images	
2.1 Introduction	7
2.2 Algorithms Described Using Mathematical	7
Morphology Operations	
2.2.1 Mathematical Morphology	7
2.2.1.1 Hit miss transformation	8
2.2.1.2 Erosion	8
2.2.1.3 Dilation	9
2.2.1.4 Opening and closing	9
2.2.2 Sample Algorithms	10
2.3 Algorithms Based on Neighborhood Criteria	14
2.3.1 Notions and Definitions	15
2.3.2 Algorithms Based on Repeated Object Pixel Removal	18
2.3.2.1 Sequential algorithms	18
2.3.2.1.1 Raster scan algorithms	19
2.3.2.1.2 Contour following algorithms	19
2.3.2.2 Parallel thinning algorithms	23
2.3.2.2.1 Four subcycles parallel thinning algorithms	23
2.3.2.2.2 Two subcycles parallel thinning algorithms	26
2.3.2.2.3 Fully (one subcycle) parallel thinning	30
algorithms	
2.3.3 Algorithms Based on the Contour of The Object	36
2.3.4 Algorithms Based on Distance Transformation	38
2.4 Conclusion	50

Chapter 3:	Gray Scale and 3D Thinning Algorith	ıms		
3.1 Introd	3.1 Introduction			
3.2 Algori	thms Described Using Gray Scale			
Mathe	matical Morphology	53		
3.2.1 Gra	ay Scale Mathematical Morphology	53		
	2.1.1 Gray scale erosion	53		
3	3.1.2 Gray scale dilation	54		
3	2.1.3 Gray scale opening and closing	56		
3.2.2 Sa	mple Algorithms	56		
3.3 Algor	ithms Based on Neighborhood Criteria	58		
3.4 3D T	hinning Algorithms	64		
Chapter 4:	A New Parallel Thinning Algorithm	for Gray Scale		
4.1 Introd	luction	66		
4.2 Defin	itions	66		
4.3 Algo	rithm	67		
4.3.1	Preprocessing	69		
	4.3.1.1 Segmentation	69		
	4.3.1.2 Smoothing	69		
	4.3.1.3 Hollow detection	69		
4.3.2	Removal Operation	70		
	4.3.2.1 Unrestricted removal operation	71		
	4.3.2.2 Restricted removal operation	72		
4.3.3	Pruning	7:		
4.4 Sum	mary of The Algorithm	7-		
4.5 Anal	ysis of Tuning Parameters	7		
4.6 Proc	of of the Termination of The Algorithm	9		

4.7 Computational Complexity	91
Chapter 5: Results	
5.1 Introduction	92
5.2 Test Set	92
5.2.1 Test Set One: Chromosomes Images	92
5.2.2 Test Set Two: Actinomyces Images	98
5.2.3 Test Set Three: Documents and Engineering Drawing	106
5.3 Results Analysis	106
5.3.1 Test Set 1	106
5.3.2 Test Set 2	141
5.3.3 Test Set 3	144
Chapter 6: Conclusion and Future Work	149
References	151

Chapter 1

Introduction

Chapter 1

Introduction

1.1 Motivation and Justification

The use of a data reduction technique is essential whenever the amount of data at disposal is large with respect to the real needs of the task to be executed. Thinning is such an example in image processing. It is a fundamental preprocessing step for several pattern recognition algorithms and analysis applications. The use of thinning span a wide range of applications. In the biomedical field, applications of thinning include analysis of chromosomes and x-ray image analysis of coronary arteries. In other fields, thinned images have found applications in the processing of bubble chamber negatives, recognition of typed and handwritten text, counting of asbestos fibers in air filters, quantitative metallography, measurements of soil cracking and automatic visual analysis of industrial parts [12, 33, 53, 89].

The wide range of applications shows the usefulness of thinning, which reduces patterns to thin line representations. The thin line representation of certain elongated patterns permits a simpler structural analysis and more intuitive design of recognition algorithms. In addition, the reduction of an image to its essentials can eliminate some contour distortions while retaining significant topological and geometric properties.

Applying thinning directly to gray scale images is motivated by the desire to directly process images with gray scale levels distributed over a range of intensity values. This will avoids shape distortions that may irremediably affect the presence of features in the binary image generated even if an optimal thresholding algorithm is used to produce the binary image. The thinned version obtained from thinning a gray scale image algorithm after thresholding is dependent on the chosen threshold value, so thinning gray scale images directly is preferred.

1.2 Thinning and Skeletonization

Thinning and skeletonization have been intensively investigated in the literature. Several researchers have used different definitions of skeletons. Some of these definitions documented in the literature will be listed in the following according to the similarity in handling.

Blum[14] and Montanari [64] defined the skeleton as the result of propagating wave fronts from the inside of the edge of the figure. The skeleton is then the locus of the intersection of wavefronts from opposite sides. This definition is equivalent to the definition by Duda and Hart [26]. They imagine the interior of the figure to be composed of dry grass and suppose a fire is set simultaneously at all points along the figure boundary. The fire propagates with a uniform speed towards the middle of the figure. At some points the fire fronts from various directions are meet. These points are called quench points. The set of quench points defines the skeleton of Fig. (1.1) illustrates the fire propagation concept.

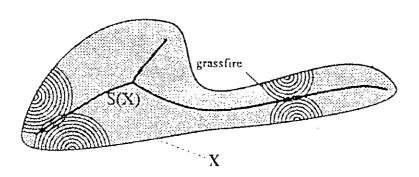


Figure 1.1 An illustration of the fire propagation concept.

Consider the following two simple examples. If the figure is a circle then the advancing fire line will describe concentric circles of continuously decreasing radius until the fire is extinguished at the center of the circle. In this case the skeleton is a single point. A second example is a rectangle. The advancing fire line, initially is also a rectangular and adjacent sides extinguish each other forming branches a, b, c and d of the skeleton. At the instant that these branches are complete the short sides of the fire