DIAGNOSIS, TREATMENT AND COMORBIDITIES OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATIENTS IN QENA CHEST HOSPITAL

Thesis

Submitted for Partial Fulfillment of Master Degree

In Chest Diseases

Esraa Ibrahiem Hussien Adm

M.B., B. Ch, Assiut University

Supervised by

Prof. Adel Mahmoud Khattab

Professor of Chest Diseases
Faculty of Medicine - Ain Shams University

Dr. Nehad Mohammed Osman

Assistant Professor of Chest Diseases Faculty of Medicine - Ain shams University

Faculty of Medicine Ain Shams University 2016

Abstract

Introduction:

Chronic Obstructive Pulmonary Disease (COPD) isa progressive disease which is distinguished by permanent limitations of airflow through the respiratory tract.

Patients and Methods:

This study included all COPD patients at Qena Chest Hospital in the period from December 2014 to December 2015.

Results:

The mean age of the patients in the study was 65.0±7.5 and most patients were males 87.9%, HTN, DM, and IHDwere the most common comorbidities associated with COPD patients, theophylline was the most common bronchodilator used.

Keywords:

COPD, Qena

List of Contents

Title Pa		
•	List of Abbreviations	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Work	3
•	Review of literature	4
•	Subjects & Methods	69
•	Results	80
•	Discussion	105
•	Summary	117
•	Recommendations	121
•	References	122
	Arabic Summary	

List of Abbreviations

\$......Dollar **AECOPD**Acute exacerbation of chronic obstructive pulmonary disease **AMP**.....adenosine monophosphate **BAL**.....Bronchoalveolar lavage BMI.....Body mass index CAPCommunity-acquired pneumonia **CB**.....Chronic bronchitis **CHF**chronic heart failure **COPD**.....Chronic obstructive pulmonary disease **CPAP**Continuous positive airway pressure DLCO......Diffusing capacity of the lung for carbon monoxide **DM**.....DiabetesMellitus **DNA**Deoxyribonucleicacid **EMPs** Endothelialmicroparticles **ERS**The European Respiratory Society FEV-1/FVCForced expiratory volume in first second/ forced vital capacity FEV1Forced expiratory volume in first second FFMFat-free mass GERGastroesophageal reflux **GERD**.....Gastroeosphageal reflux disease Chronic **GOLD**.....Global Initiative for Obstructive Lung Disease **H. influenzae**......Haemophilus Influenza

List of Abbreviations

HF	.Heart failure					
HRCT	.High - resolution computed tomography					
HROOT.						
HRQoLHealth-related quality of life						
	Inhaled corticosteroids					
_	Immunoglobulin A					
	Immunoglobulin E					
_	gG Immunoglobulin G					
IgLCimmunoglobulin free light chains						
L-1 Interleukin 1						
IL-6	-6 Interleukin 6					
IL-8	3Interleukin 8					
kPa	Unit of pressure. It is equivalent to one newton per square metre					
LAACs	AACsLong-acting anticholinergics					
LABALong-acting beta-agonist						
LVRS	LVRSLung volume reduction surgery					
M. catarrhalisMoraxella catarrhalis						
MgMilligram						
NE	NE Neutrophil elastase					
NIV	NIVNon-invasive ventilation					
OSA	SAObstructive sleep apnea					
PaCO2Arterial partial pressure of CO2						
PaO2Arterial partial pressure of oxygen						
PE	EPulmonary embolism					
pH	H Measure of the acidity or alkalinity of an aqueous solution					
РН	.Pulmonary hypertension					

List of Abbreviations

TNF-aTumour necrosis factor-a

VAP.....Ventilator-acquired pneumonia

VO2 maxMaximal oxygen consumption

WHOWorld Health Organization

alat.....Alpha 1 Antitrypsin

List of Tables

Tabl	e No. Title Page			
Table (1):	Distribution of studied cases			
	according to Age and BMI81			
Table (2):	Distribution of studied cases			
	according to sex82			
Table (3):	Distribution of the studied cases			
	according to their residence83			
Table (4):	Distribution of studied cases			
	according to occupation83			
Table (5):	Distribution of studied cases			
	according to education level 84			
Table (6):	Exposures among the studied cases 85			
Table (7):	Distribution of studied cases			
	according to site of service provided			
	and the prescribing doctor87			
Table (8):	Distribution of studied cases			
	according to regulation on treatment			
	and satisfaction of treatment			
Table (9):	Distribution according to vaccination			
	status and family history89			
Table (10):	Distribution of COPD patients			
	according to number of hospitalization			
	and rate of exacerbation			
Table (11):	Comorbidities among the studied			
	cases90			
Table (12):	Symptoms among the studied cases 91			
Table (13):	Pulmonary function among the			
	studied cases92			

List of Tables (Cont.)

Table No. Title Page			
Table (14):	Home treatment of the studied cases 92		
Table (15):	Inpatient treatment of the studied		
	cases94		
Table (16):	Inhalation treatment of the studied		
	cases95		
Table (17):	Treatment complications among the		
	studied cases		
Table (18):	Complications among the studied		
	cases98		
Table (19):	Outcomes and causes of death		
	among the studied cases99		
Table (20):	: Severity of COPD (according to		
	GOLD) in the studied cases 100		
Table (21):	: Correlation between FEV1 predicted		
	and age, BMI, smoking index and		
	dyspnea grade101		
Table (22):	Correlation between smoking		
	conditions and FEV1 predicted 102		
Table (23):	Correlation between compliance and		
	comorbidities conditions regarding		
	FEV1 predicted		

List of Figures

Figure No. Title Page			
Fig. (1):	Age (years) distribution of the studied cases		
Fig. (2):	Sex distribution of the studied cases 82		
Fig. (3):	Education distribution of the studied cases		
Fig. (4):	Exposures among the studied cases 86		
Fig. (5):	Active smoking among the studied cases		
Fig. (6):	Regulation on treatment among the studied cases88		
Fig. (7):	Satisfaction among the studied cases 88		
Fig. (8):	Comorbidities among the studied cases90		
Fig. (9):	Clinical findings among the studied cases		
Fig. (10):	Home treatment of the studied cases 93		
Fig. (11):	Inpatient treatment of the studied cases		
Fig. (12):	Inhalation device among the studied cases		
Fig. (13):	Inhalation complications among the studied cases		
Fig. (14):	Treatment complications among the studied cases		
Fig. (15):	Complications among the studied cases98		

List of Figures (Cont.)

Figu	ıre No.	Title	Page
Fig. (16):	Outcomes amor	ng the studied	l cases 99
Fig. (17):	Severity (according to GOLD) in the studied cases		
Fig. (18):	Correlation predicted and si	between moking index	
Fig. (19):	Correlation predicted and a	between ge of the patio	
Fig. (20):	Correlation predicted and B		
Fig. (21):	Correlation predicted and D		

Introduction

Chronic Obstructive Pulmonary Disease (COPD) isa progressive disease which is distinguished by permanent limitations of airflow through the respiratory tract. Chronic symptoms deteriorate the quality of life and limit the occupational and sociallivesofpatients (Wiśniewski et al., 2014).

Chronic obstructive pulmonary disease (COPD) is an important cause of death and disability worldwide and is expected to be the 3rd and 5th leading cause of mortality and morbidity respectively in 2020 (Aryal et al., 2012).

Chronic obstructive pulmonary disease(COPD) is one of the most frequent causes of chronic morbidity and mortality in the world. It poses a serious problem to public health, and it is a frequent cause of hospitalization and early disability of patients (Wiśniewski et al., 2014).

Tobacco smoking is the major cause of the disease, although only a minority of smokers develop clinically significant symptoms. Other factors, such as indoor and outdoor air pollution, infection in childhood, asthma, genetic factors and occupational dust have been reported to contribute to the development of COPD (Andreou et al., 2014).

Exacerbations of COPD is a major cause of morbidity. In particular, they greatly contribute to decline of health-related quality of life, increase in symptoms and breathlessness, progression of the disease, and increased risk of mortality (*Wang*, 2010).

Comorbidities in general have a significant impact on health status, healthcare utilization, all-cause hospital admissions and mortality in COPD patients. COPD patients are more likely to die from a comorbid disease than COPD itself (*Patel and Hurst*, 2011).

Aim of the Work

The purpose of the present study is to assess the diagnosis, treatment, and comorbidities of COPD patients in Qena Chest Hospital in the period from December 2014 to December 2015.

REVIEW OF LITERATURE

Definition

COPD, a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients (*Vestbo et al.*, 2013).

Prevalence

Prevalence of clinically significant COPD (GOLD stage 2 or higher) is estimated to be 10.1% according to the results of an international population-based investigation. It was estimated that 1 every 4 men and 1 every 6 women without COPD at the age of 55 years will eventually develop COPD at some time during their further life.

Prevalence rates of COPD are expected to increase in the next decades, notably among women and in developing countries populations (*Spyratos et al.*, 2012).

In 5 years study (1972-1976) 13.6% of patients admitted to Ain Shams Chest Section were COPD sufferers(*El Waraki et al.*, *1992*).

It wasfound that the prevalence of chronic obstructive lung disease was 23.1% in an elderly population living in a rural area in Minya Governorate (*Shaabaan et al.*, 1997).

Burden of COPD:

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality and morbidity worldwidein both industrialized and developing countries which, accounts for 5% of all death globally (Shrestha et al., 2015).

Accordingto WHO estimates,65millionpeoplehavemoderatetoseverechronicobs tructivepulmonarydisease (COPD). More than3millionpeoplediedofCOPDin2005,whichcorresponds to 5 %ofalldeathsglobally.

Total

deathsfromCOPDareprojectedtoincreasebymore than 30 %inthenext10yearsunlessurgentactionistakento reduce theunderlyingriskfactors,especiallytobaccouse (WHO, 2015).

Morbidity