

Utilization of Compounds Bearing Carbonyl Group in Heterocyclic Synthesis

A Thesis Submitted for the Degree of Doctor of philosophy in Science (Organic Chemistry)

By

David Shoukry Anton Haneen

Supervised by

Prof. Dr. Ahmed Said Ahmed YoussefProfessor of Organic Chemistry

Prof. Dr. Kamal Abdel Rahman KandeelProfessor of Organic Chemistry

Prof. Dr. Magdy Mohamed Hemdan MohamedProfessor of Organic Chemistry

Prof. Dr. Wael S. I. Abou El-MagdProfessor of Organic Chemistry

Dr. Saad Ramadan Mohamed Atta-AllahAssociated Professor of Organic Chemistry

(2017)

Utilization of Compounds Bearing Carbonyl Group in Heterocyclic Synthesis

A Thesis for Ph.D. Degree in Organic Chemistry

Presented by

David Shoukry Anton Haneen

(M. Sc.)

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
(2017)

Utilization of Compounds Bearing Carbonyl Group in Heterocyclic Synthesis

A Thesis for Ph.D. Degree in Organic Chemistry

Presented by David Shoukry Anton Haneen

(M. Sc.)

Thesis Advisors	Thesis Approved
Prof. Dr. Ahmed Said Ahmed Youssef	
Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	
Prof. Dr. Kamal Abdel Rahman Kandeel	
Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	
Prof. Dr. Magdy Mohamed Hemdan Mohamed	
Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	
Prof. Dr. Wael S. I. Abou El-Magd	•••••
Professor of Organic Chemistry, Faculty of	
Science, Ain Shams University.	
Dr. Saad Ramadan Mohamed Atta-Allah	
Associated Professor of Organic Chemistry, Faculty of Science, Ain Shams University.	

Head of Chemistry Department

Prof. Dr. Ibraheim H. A. Badr

Utilization of Compounds Bearing Carbonyl Group in Heterocyclic Synthesis

A Thesis for Ph.D. Degree in Organic Chemistry

Presented by David Shoukry Anton Haneen

(M. Sc.)

Approved by

Prof. Dr. Ahmed Said Ahmed Youssef	
Professor of Organic Chemistry, Faculty of	
Science, Ain Shams University.	
Prof. Dr. Kamal Abdel Rahman Kandeel	•••••
Professor of Organic Chemistry, Faculty of	
Science, Ain Shams University.	
Prof. Dr. El-Sayed M. El-Sayed Mahdy	
Professor of Biochemistry, Faculty of	
Science, Helwan University.	
Prof. Dr. Tarik El-Sayed Ali	•••••
Professor of Organic Chemistry, Faculty of	
Eduction, Ain Shams University.	

Head of Chemistry Department Prof. Dr. Ibraheim H. A. Badr

Contents

	Pages
(Acknowledgement)	
English Summary	i
Introduction	1
Chemistry of Oxazolones	1
• Structure & properities of oxazolones	3
• Synthesis of oxazolone derivatives	6
• Reactions of oxazolones: Ring opening	12
• Ring opening followed by cyclization	15
• Addition reaction on exocyclic double bond	25
Reactions of the acid hydrazides	27
Pyrazole-3(4)-carbaldehyde	39
• Synthetic Methods	39
• Chemical Reactions.	43
• Biological activity	54
Results and Discussion	
Part (I): Synthesis of some novel pyrazolotriazine	
derivatives	56
• Synthesis of 6-amino pyrazolo[1,2-	
a][1,2,4]triazines-4,8-diones derivative	57
• Reactions of the pyrazolotriazines derivative with	31
different electrophiles	63
Part (II): Antitumor activity evaluation of some novel	
pyrazolotriazine derivatives	88

Part (III): Synthesis of some novel hydrazone,	
pyrazolone, chromenone, 2-pyridone and 2-pyrone	
derivatives	92
• Synthesis of the cyanoacetohydrazide and the	
pyrazolone derivatives.	93
• Reactions of the cyanoacetohydrazide derivative	
with some nucleophilic and electrophilic reagents	98
• Reactions of the pyrazolone derivative with some	
reagents	104
• Reactions of the arylidene malononitrile with some	
nitrogen nucleophiles	111
• Reactions of the pyridin-2-one derivative with	
some carbon electrophiles	115
Part (IV): Antimicrobial activity evaluation of some	
novel hydrazone, pyrazolone, chromenone, 2-pyridone	
and 2-pyrone derivatives	123
Spectroscopic Figures	123
Experimental	127
References	171
Arabic Summary	ĺ

Acknowledgmenz

The author wishes to refer his deep appreciation and gratitude

To

Prof. Dr. Ahmed Said Ahmed Youssef, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Kamal Abdel Rahman Kandeel, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Magdy Mohamed Hemdan Mohamed, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Wael S. I. Abou El-Magd, Professor of Organic Chemistry, Chemistry Department, faculty of Science, Ain Shams University.

A,

Dr. Saad Ramadan Mohamed Atta-Allah, Associated Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

For

Suggesting the subject, interpreting the results, their valuable scientific guidance, help, and encouragement during the work of this thesis.

Abstract

Abstract

The chemistry of 1,3-oxazolones had received great attention in the last decades. The importance of these compounds is due to facile opening of the oxazolone ring to give acyclic products which can recyclize again to afford varieties of heterocyclic systems of synthetic and biological importance.

The original work of this thesis can be classified into four parts:

Part 1: In this part, the 6-amino pyrazolo[1,2-a][1,2,4]triazines-4,8-diones derivative **3** was synthesized. Then it was reacted with several electrophiles to form novel pyrazolotriazine derivatives.

Part 2: In this part, some of the obtained compounds in part 1 were evaluated against their antitumor activity.

Part 3: In this part, the cyanoacetohydrazide derivative **16**, pyrazolone derivative **17** and pyridin-2-one derivative **25** were prepared and used as synthons for the construction of Schiff's bases, chromenone, tetrazolopyrazolone, pyrazolone, pyran-2-one and triazolopyridine derivatives.

Part 4: In this part, some of the obtained compounds in part 3 were evaluated against their antimicrobial activity.

English Summary

English summary

The 1,3-oxazolones, the pyrazole rings and their derivatives are classes of nitrogen containing heterocyclic compounds and used extensively as important synthons in organic synthesis. Also they have widespread potential biological activities in medicinal and pesticide chemistry. The original work of this thesis can be classified into four parts:

Part (I): Synthesis of some novel pyrazolotriazine derivatives.

The geometrical isomers of the acid hydrazide derivatives Z-(2a) & E-(2b) were previously prepared by our research group upon hydrazinolysis of 4-benzylidene-2-phenyl-1,3-oxazole-5(4*H*)-one **1**.

Treatment of the Z-(2a) with ethyl cyanoacetate in refluxing ethanol gives 6-amino pyrazolo[1,2-a][1,2,4]-triazines-4,8-diones derivative 3. Similar treatment of the E-(2b) with ethyl cyanoacetate under the same conditions, gave E-(2b) recovered unchanged. However, its treatment with ethyl cyanoacetate in the presence of a catalytic amount of sodium ethoxide in refluxing ethanol affored the pyrazoline-3, 5-dione derivative 4 (Scheme 1).

English summary

Scheme 1

English summary

The treatment of an ethanolic solution of compound 3 with different aromatic aldehydes such as benzaldehyde, *p*-methoxybenzaldehyde and *p*-chlorobenzaldehyde in the presence of a catalytic amount of acetic acid, afforded the expected Schiff's bases **5a-c** beside small amounts of the unexpected product **6a-c**, respectively. On the other hand, when compound 3 is treated with istain in refluxing ethanol and a catalytic amount of acetic acid, it afforded the Schiff's base derivative **7** (**Scheme 2**).

Refluxing of compound 3 in acetic anhydride afforded the diacetyl derivative 8a. However, its heating on water bath with acetic anhydride yielded a mixture of diacetyl and monoacetyl derivatives 8a & 8b, respectively (Scheme 2).

Scheme 2

Treatment of compound 3 with phenyl isocyanate in dry benzene gives the urea derivative 9. However, its refluxing with benzoyl isothiocyanate in dry acetonitrile

yielded the thiourea derivative **10**. Heating of the thiourea derivative **10** with phenylhydrazine in ethanol/dioxane (1:1) mixture in the presence of a catalytic amount of acetic acid afforded a mixture of two compounds one of them is identical in all respects (m.p., mixed m.p., TLC) with compound **3** and the other was proved to be the 1,2,4-triazole derivative **11** (**Scheme 3**).

Scheme 3

Refluxing compound 3 with p-toluenesulphonyl chloride in dry benzene afforded p-toluene sulfonamide derivative 12. Treatment of a solution of compound 3 in