

The Role of urinary chitinase 3 Like Protein 1 for Early Detection of Acute Kidney Injury in Adult Critically III Patients

Thesis

Submitted for Partial Fulfillment of Master Degree of Internal Medicine

BY:

Fatma Mohamed Abbas Amin

M.B.B.Ch

Faculty of Medicine- Alexandria University

Under Supervision of:

Prof. Dr. Osama Mahmoud Mohamed

Professor of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Prof. Dr. Hesham Mohamed Abou Elleil

Professor of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Dr. Hussein Sayed Hussein

Lecturer of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain shams University
2017

ABSTRACT

Background: AKI is a common problem in ICU patients and is mostly multifactorial. Also, it is known to increase mortality, duration of ICU and hospital stay and increase the cost of care in critically ill patients. Early diagnosis in these settings help in decreasing the outcome of AKI. Multiple biomarkers have developed concentrating on early diagnosis of acute kidney injury. urinary Chitinase 3 like protein 1 is a novel biomarker studied for early detection of acute kidney injury.

Objectives: The current study is aimed to assess the role of urinary chitinase 3 like protein 1 (CHI3L1) as an early biomarker for detection of acute kidney injury in adult critically ill patients.

Patients and methods: This is a prospective cohort study that was conducted in Ain Shams University Hospital. The study included 30 adult critically ill patients with normal kidney function and they will be observed for 48 hours. The development of Acute Kidney Injury will be based on Serum Creatinine and Urine Output criteria according to KDIGO Criteria. Urine samples, for assessment of urinary CHI3L1, urine creatinine and urine CHI3L1/Cr ratio were collected under aseptic techniques at 3 times intervals (0hr, 12 hrs and 24hrs).

Results: our results showed of these 30 patients, 15 patients developed acute kidney injury using KDIGO Criteria and 15 patients had normal kidney function. Our results showed the percentage of patient who developed AKI according to KDIGO, stage I 60.0%, stage II 33.3% and stage III 6.7%. Of these patients 80% developed AKI based on serum creatinine and 20% based on serum creatinine and urine output. Our results showed that there is statistically significant difference between AKI group and non-AKI group as regards urine chitinase 3 like protein 1(CHI3L1) at 0hour, 12 hours and 24hours (P≤0.05). As the higher level of urine CHI3L1 was found in AKI group which ranges from 35-135ng/ml with mean 94±34.02 at 0 hour, from 70-200ng/ml with mean 126.80±43.77 at 12 hours and from 105-200ng/ml with mean 160.57±28.02 which means that urine CHI3L1 level increases with AKI. Our results showed that there is statistically significant difference as regards urine CHI3L1 between non-AKI group and the 3 stages of AKI in AKI group at 0hr, 12hrs and 24hrs $(P \le 0.05)$.

Conclusion: Urinary chitinase 3 like protein 1 is a highly sensitive early marker in prediction of acute kidney injury in adult critically ill patients.

Key Words: acute kidney injury, biomarkers, chitinase 3 like protein 1, critically ill patients.

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards Prof. Dr. Osama Mahmoud Mohamed, Professor of Internal Medicine and Nephrology, Faculty of Medicine—Ain Shams University for his continuous encouragement, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I would like to express my deepest appreciation, respect and thanks to Prof. Dr. Hesham Mohamed Abou Elleil, Professor of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University, for his continuous guide in all aspects of life beside his great science, knowledge and information.

I would like to express my deepest appreciation, respect and thanks to Dr. Hussein Sayed Hussein, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University, for his continuous guide in all aspects of life beside his great science, knowledge and information.

Last but not least, sincere gratitude to *My Family* for their continuous encouragement and spiritual support.

سورة البقرة الآية: ٣٢

Contents

Subjects	Page
List of abbreviations	II
List of figures	VII
List of tables	IX
• Introduction	1
Aim of the work	
Review of Literature	
◆ Chapter (1): Acute Kidney Injury	5
◆ Chapter (2): Acute Kidney Injury in Critica ill patients	•
◆ Chapter (3): Novel Biomarkers in Acute Kidney Injury	48
◆ Chapter (4): Chitinase 3 Like Protein 1	63
Patients and Methods	74
• Results	85
• Discussion	109
Summary and Conclusion	117
• Recommendations	121
• References	122
• Arabic Summary	

I

ACEIs : Angiotensin-converting enzyme inhibitor.

ACS : Acute coronary syndrome

AHF: Acute heart failure.

AIN : Acute interstitial nephritis.

AKI : Acute kidney injury.

AKI-EPI: Acute kidney injury-epidemiologic prospective

investigation.

AKIN : Acute kidney injury network.

AKS Acute kidney stress.

AMcase: Acidic mammalian chitinase.

APACH: Acute physiology and chronic health evaluation.

E

ARBs: Angiotensin receptor blockers.

ARF : Acute renal failure.

ATN: Acute tubular necrosis.

AUC : Area under a curve.

BMI : Body mass index.

BRP-39 : Breast regression protein 39.

CAD : Coronary artery disease.

CBC : Complete blood picture.

CD : Cluster of differentiation.

CHF : Congestive heart failure.

CHI3L1 : Chitinase 3 like protein 1

CI : Confidence interval.

CI-AKI : Contrast induced acute kidney injury

CKD : Chronic kidney disease.

CKD-EPI : Chronic kidney disease-epidemiology

collaborative equation.

CLP : Chitinase like protein.

CNIs : Calcineurin inhibitors.

COPD : Chronic obstructive pulmonary disease.

CBP : Cardio-pulmonary bypass.

CRBSI : Catheter related bloodstream infection.

CR. : Creatinine.

CRP : C-reactive protein.

CRRT : Continous renal replacement therapy.

CRS: Cardio-renal syndrome.

CSA-AKI: Cardiac surgery associated acute kidney injury.

CVP : Central venous pressure.

CVVH : Continuous veno-venous hemofiltration

DCL : Distal convoluted tubules

DGF : Delayed graft function.

DM : Diabetes mellitus.

ECM: Extracellular matrix.

EDTA : Ethylene diamine tetra-acetate.

ELISA : Enzyme-linked immune-sorbent essay.

ESKD : End stage kidney disease.

ESRD : End stage renal disease.

FENa : Fractional excretion of sodium.

FEUr : Fractional excretion of urea.

FiO2 : Fraction of inspired oxygen.

GBM: Glioblastoma.

GFR : Glomerular filtration rate.

GIT : Gastrointestinal tract.

GLc-NAc : N-49 acetyl glucosamine.

GN : Glomerulonephritis.

HB : Hemoglobin.

HcGP: Human cartilage glycoprotein.

HCV: Hepatitis C virus.

HF : Heart failure.

HRS: Hepato-renal syndrome.

IABP : Intra-aortic balloon pressure.

IAH : Intra-abdominal hypertension.

IAP : Intra-abdominal pressure.

IBD : Inflammatory bowel disease.

ICU : Intensive care unit.

IG : Immunoglobulin.

IGF-1 : Insulin like growth factor 1.

IGFBP-7: Insulin like growth factor binding protein7.

IHD: Ischemic heart disease.

IL: Interleukin.

I/R : Ischemia- reperfusion

KDIGO: Kidney disease improving global outcomes.

KIM-1 : Kidney injury molecule 1

LBP: Liver binding protein.

L-FABP: L-type fatty acid binding protein.

LODS : Logistic organ dysfunction system.

LOS : Length of stay.

MAP : Mean arterial pressure.

MMP: : Matrix metalloproteinase.

.....

MODS : Multiple organ dysfunction system.

MPM : Mortality predictive model.

NAC : N-acetyl cysteine.

NAG : N-acetyl B-d glucosamine.

NGAL : Neutrophil gelatinase associated lipoprotein.

NSAIDs : Non-steroidal anti-inflammatory drugs.

NSBBs : Non-selective beta blockers.

PaO2 : Partial pressure of oxygen.

PD : Peritoneal dialysis.

PIRRT : Prolonged intermittent renal replacement therapy.

PPI : Proton pump inhibitors.

PPV : Positive pressure ventilation.

RA : Rheumatoid arthritis.

RAAS : Renin-angiotensin aldosterone system

RCT : Randomized control trial.

RIFLE: Risk, Injury, Failure, Loss, End-stage.

RRT : Renal replacement therapy.

SA-AKI : Sepsis associated acute kidney injury.

SAPS : Simplified acute physiology score.

SIRS : Systemic inflammatory response syndrome.

SLED : Sustained low efficiency dialysis.

SOFA : Sequential organ failure score.

TECs: Tubular epithelial cells.

Th-2: Type 2 T helper cells.

TIMP-2 : Tissue inhibitor metalloproteinase 2.

TINU: Tubulo-interstitial nephritis and uveitis.

TIPS : Trans-jugular intra-hepatic portosystemic shunt.

TLRs : Toll like receptors.

UA : Urine analysis.

UO/UOP : Urine output.

VSMCs : Vascular smooth muscle cells.

WBCs : White blood cells.

List of Figures

No.	<u>Figure</u>	Page
1	The RIFLE Criteria for AKI.	6
<u>2</u>	APACHE II severity of disease classification.	31
<u>3</u>	SAPS II score.	32
<u>4</u>	SOFA score.	34
<u>5</u>	Summary of pathophysiologic interaction between sepsis and acute kidney injury.	38
<u>6</u>	Potential mechanism and specificity of urinary biomarkers of kidney damage.	50
<u>7</u>	YKL-40 regulates the pathogenesis of cancer and inflammatory disorder.	73
<u>8</u>	Comparison between the two studied groups according to urine CHI3L1.	97
9	Comparison between the two studied groups according to urine CHI3L1/Cr. ratio.	99
<u>10</u>	ROC Curve for urine CHI3L1 to predict AKI vs non-AKI.	101
<u>11</u>	ROC Curve for urine CHI3L1/Cr. ratio to predict AKI vs non-AKI.	103

List of Tables

No.	<u>Table</u>	Page
1	AKIN Classification of Acute Kidney Injury	7
2	KDIGO Staging of Acute Kidney Injury	8
3	Risk factors of Acute Kidney injury	11
<u>4</u>	Urinary tests in Acute Kidney Injury	19
<u>5</u>	Comparison between the two studied groups according to demographic data	86
<u>6</u>	Comparison between the two studied groups according to GFR	87
<u>7</u>	Comparison between the two studied groups according to risk factors	88
<u>8</u>	Comparison between the two studied groups according to SOFA score	89
<u>9</u>	Comparison between the two studied groups according to CBC	90
<u>10</u>	Comparison between the two studied groups according to CRP	91
<u>11</u>	Comparison between the two studied groups according to urine analysis	91
<u>12</u>	Comparison between the two studied groups according to serum creatinine	92
<u>13</u>	Comparison between the two studied groups according to urine output (uop)	93
<u>14</u>	Distribution between the studied cases according to stage and progress in AKI group	94
15	Relation between AKI stage and progress	95

List of Figures

No.	<u>Table</u>	<u>Page</u>
<u>16</u>	Comparison between the two studied groups according to urine CHI3L1 ng/ml	96
<u>17</u>	Comparison between the two studied groups according to urine CHI3L1/Cr. ratio ng/mg	98
<u>18</u>	Comparison between the two studied groups according to mortality	100
<u>19</u>	Agreement (sensitivity & specificity) for urine CHI3L1 to predict AKI vs non-AKI	102
<u>20</u>	Agreement (sensitivity & specificity) for urine CHI3L1/Cr. ratio to predict AKI vs non-AKI	104
<u>21a</u>	Relation between AKI stage and urine CHI3L1 in AKI group	105
<u>21b</u>	Relation between AKI stage and urine CHI3L1 in total sample	106
<u>22a</u>	Relation between AKI stage and urine CHI3L1/Cr. ratio in AKI group	107
<u>22b</u>	Relation between AKI stage and urine CHI3L1/Cr. ratio in total sample	108

Introduction

Acute kidney injury (AKI) is a well-recognized clinical condition that occurs in critically ill patients. Its incidence in all hospitalized patients is about 1-7% and about 30-50% in intensive care units (**Herget-Rosenthal S** et al., 2012).

Despite of the advancement made for understanding the pathophysiology and causal processes of acute kidney injury and the developments in critical care medicine, acute kidney injury (AKI) mortality rates are still high and account for more than 50% in ICU. Also, about 20% will develop chronic kidney disease (CKD) and end stage renal disease requiring RRT (Herget-Rosenthal S et al., 2012).

The Acute Dialysis Quality Initiative first defined acute kidney injury with RIFLE criteria in 2004. Then Acute Kidney Injury Network (AKIN) put staging for acute kidney injury. Then, Kidney Disease Improving Global Outcomes (KDIGO) put a recent guideline update. Acute kidney injury is now defined as an increase in serum creatinine of 0.3mg/dl or more within 48hours of observation or 1.5 times baseline or greater, which is known or presumed to have occurred within 7 days, or a reduction in urine volume below 0.5 ml/kg/h for 6 hours (KDIGO Working Group, 2012).