الاتجاهات الحديثة في تصوير المشيمية وطبقة ظهارة الخلايا الصبغية الشبكية

رسالة توطئة للحصول على درجة الماجيستير للامراض الصدرية مقدمة من الطبيبة / مروة سامي توفيق شرف

تحت إشراف

أد. / طارق أحمد المأمون

أستاذ طب وجراحة العيون كلية الطب جامعة عين شمس

د / تامر فهمی علیوة

مدرس طب وجراحة العيون كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ۲۰۱۵

Recent trends in choroidal & RPE imaging

Essay

Submitted For Partial Fulfillment of Master Degree in Ophthalmology

Submitted By

Marwa Sami Sharaf

M.B, B.Ch

Supervised By

Professor Dr/ Tarek Ahmed Al-Mamoun

Professor of Ophthalmology

Faculty of Medicine

Ain Shams University

Doctor / Tamer Fahmy Eliwa

Lecturer of Ophthalmology

Faculty of medicine

Ain Shams University

Faculty of Medicine
Ain Shams University
2015

Contents

Subjects	Page
List of abbreviations	<i>i</i>
List of Figures	ii
• Introduction	1
Aim of the work	3
• Review of Literature	
♦ Imaging Modalities	4
♦ Age Related Macular Degeneration	17
♦ Central serous chorioretinopathy	34
♦ Choroidal Tumours	46
♦ Choroidal Detachment	64
♦ Congenital Hypertrophy Of RPE	67
♦ RPE Tumours	74
• Summary	77
• References	82
Arabic Summary	

Acknowledgement

Thanks first and last to *Allah* for granting me to accomplish this work, as we owe to him for his support and guidance in every step in our life.

I would like to express my cordial appreciation and infinite gratitude to **Professor**/ **Tasek Almed Al-Mamoun** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his guidance and advice along the entire course of the essay.

I am also grateful to **Dr / Tames Falmy Eliwa** Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, for his willing assistance and continuous encouragement.

Lastly, I would like to express my deep thanks to my family, my friends and Specially, *My Husband and Little son* for their support.

Marwa Sami Sharaf

List of Abbreviations

AMN	Acute macular neuroretinopathy
APMPPE	Acute posterior multifocal placoid pigment epitheliopathy
ARCA	Age related choroidal atrophy
ARMD	Age related macular degeneration
CHRPE	Congenital hypertrophy of retinal pigment epithelium
CNV	Choroidal neovasatarization
CSCR	Central Serous Chorioretinopathy
EDI-OCT	Enhanced depth imaging optical coherence tomography
FFA	Fundus Fluorescein Angiography
FAF	Fundus Autofluorescence
GA	Geographic atrophy
ICG	Indocyanine Green
ICGA	Indocyanine Green Angiography
IS/OS	Inner segment/outer segment
LF	Lipofuscin
NIA	Near Infrared Autofluorescence
OCT	Optical coherence tomography
PED	Pigment epithelial detachment
PPCT	Peripapillary choroidal thickness
RPE	Retinal pigment epithelium
SD-OCT	Spectral domain optical coherence tomography

SLD	Super-luminescent diode
SLO	Scanning Laser Ophthalmoloscope
SS-OCT	Swept source optical coherence tomography
TD-OCT	Time Domain Optical coherence tomography
US	Ultrasound

List of Figures

Figure 1: Diagram of the basic principle of conventional Time-Domain OCT. Error! Bookmark not de

Fiaure 2: Diagram	of the basic princ	ciple of Spectral-Domain	OCT Error! Bookmark not defined.

Figure 3 : EDI-OCT: Some choroidal details are visible Error! Bo	ookmark not defined.
--	----------------------

Figure 4: Comparison of different choroid-visualizing OCT . EDI-OCT and SS-OCTError! Bookmark no

Figure 5: The Panoramic 200 Optomap Error!	Bookmark not defined.
--	-----------------------

Figure 6 : Illumination system of fundus camera	Error! Bookmark not defined.
--	------------------------------

Figure 7: FFA demonstrating the normal choroidal pattern **Error! Bookmark not defined.**

Figure 8: Normal Indocyanine G	Green (ICG) angiogram.	Error! Bookmark not defined.
--------------------------------	------------------------	------------------------------

Figure 9 : Fundus autofluorescence of a normal subject	Error! Bookmark not defined.
---	------------------------------

Figure 11 : A-scan technique Error! Bookmark not defined.

Figure 12: Normal A Scan & B Scan image of a human eye **Error! Bookmark not defined.**

Figure 13: EDI-OCT showing an active juxtafoveal classic CNV Error! Bookmark not defined.

Figure 14:OCT of PED	Error! Bookmark not defined.
----------------------	------------------------------

Figure 15: EDI –OCT (of ARCA shows the choroid to be ver	ry thin Error! Bookmark not defined.
-----------------------	-------------------------------------	---

Figure 16 : FFA showing a classic CNV Error! B	Bookmark not defined.
--	-----------------------

Figure 17: FFA showing PED **Error! Bookmark not defined.**

Figure 18: Fluorescein angiography of ARMD Error! Bookmark not defined.

Figure 19 : Fundus picture and ICGA of PED **Error! Bookmark not defined.**

Figure 20: Fresh haemorrhage in ARMD. **Error! Bookmark not defined.**

Figure 21: FFA showing ARMD **Error! Bookmark not defined.**

Figure 22: FFA of Geographic atrophy (GA) secondary to ARMDError! Bookmark not defined.

Figure 23: FAF of CNV Error! Bookmark not defined.

Figure 24: FAF of Choroidal neovascularization with fibrosis. Error! Bookmark not defined.

Figure 25: Retinal pigment epithelial detachment. Colour fundus and FAFError! Bookmark not defir

Figure 26: FAF	of retinal pigi	nent epithelium ((RPE) tear	Error! Bookmark not defined.

Figure 27: EDI-OCT of choroid in patient with CSCR **Error! Bookmark not defined.**

Figure 28 : FFA of CSCR	Error! Bookmark not defined.
Figure 29: FFA of CSCR	Error! Bookmark not defined.
Figure 30: FFA of CSCR	Error! Bookmark not defined.
Figure 31: ICG angiography of CSCR	Error! Bookmark not defined.
Figure 32 : ICG angiography of CSCR	Error! Bookmark not defined.
Figure 33: Acute CSCR: FFA, OCT and FAF	Error! Bookmark not defined.
Figure 34: Chronic CSCR : FFA and OCT	Error! Bookmark not defined.
Figure 35: CSCR: FAF, NIA	Error! Bookmark not defined.
Figure 36 : CSCR: B-scan ultrasonography	Error! Bookmark not defined.
Figure 37: EDI OCT of Choroidal nevus	Error! Bookmark not defined.
Figure 38 : EDI-OCT shows Macular small choroidal melanome	a.Error! Bookmark not defined.
Figure 39 : EDI OCT reveals Choroidal metastasis.	Error! Bookmark not defined.
Figure 40 : OCT shows Choroidal hemangioma	Error! Bookmark not defined.
Figure 41 : Choroidal nevus: Optomap	Error! Bookmark not defined.

Figure 42: FFA Of a manghant inelahoma.	Figure 42 : FFA of a malignant melanoma.	Error! Bookmark not defined
---	---	-----------------------------

Figure 43: ICG angiography of a choroidal melanoma	Error! Bookmark not defined.
rigate 43. ICO dilgiography of a choroladi illelationia	LITUI: DOURINGIR NOL GENNEG.

Figure 44: Ultra wide-field ICG angiography of choroidal hemangioma Error! Bookmark not defined

Figure 45: ICG of a choroidal hemangioma **Error! Bookmark not defined.**

Figure 46: Fundus autofluorescence image of a choroidal melanoma Error! Bookmark not defined.

Figure 47: An ultrasound image of the eye shows a tiny nevus **Error! Bookmark not defined.**

Figure 48: An ultrasound image of choroidal melanoma. **Error! Bookmark not defined.**

Figure 49: An ultrasound image of Choroidal melanoma **Error! Bookmark not defined.**

Figure 50 : An ultrasound image of Metastatic choroidal lesion from the breast.**Error! Bookmark no**

Figure 51: An ultrasound image of Choroidal hemangioma **Error! Bookmark not defined.**

Figure 52: Ultrawide-field FFA Panoramic system photo showsserous choroidal

detachments Error! Bookmark not defined.

Figure 53: Ultrasound sonography showing choroidal detachment Error! Bookmark not defined.

Figure 54: An ultrasound image of "Kissing" hemorrhagic choroidal detachments. Error! Bookmark I

Figure 55: A coloured fundus image of CHRPE	Error! Bookmark not defined.		
Figure 56: EDI-OCT of CHRPE.	Error! Bookmark not defined.		
Figure 57 : Fluorescein angiogram of CHRPE	Error! Bookmark not defined.		
Figure 58: Indocyanine green (ICG) angiography of CHRPE	Error! Bookmark not defined.		
Figure 59: FAF of of CHRPE	Error! Bookmark not defined.		
Figure 60: Ultrawide-field fundus photograph and fluorescein angiogram RPE			
adenoma	Error! Bookmark not defined.		
Figure 61 : B-scan ultrasonogram of an RPE adenoma	Error! Bookmark not defined.		
Figure 62: EDI-OCT of a highly myopic eye	Error! Bookmark not defined.		
Figure 63: EDI-OCT of a highly myopic eye	Error! Bookmark not defined.		
Figure 64: EDI-OCT of VKH.	Error! Bookmark not defined.		
Figure 65: EDI SD-OCT of MEWDS	Error! Bookmark not defined.		
Figure 66: Indocyanine green angiography (ICGA) of MEWDS	Error! Bookmark not defined.		
Figure 67: Fundus photographs of AMN	Error! Bookmark not defined.		

Figure 68: Infrared photographs of AMN Error! Bookmark not defined.

Figure 69: EDI-OCT of AMN Error! Bookmark not defined.

Figure 70: EDI-OCT of AMN Error! Bookmark not defined.

Introduction

Due to the choroid's chief functions of supplying metabolic support to the RPE and outer retina and the prelaminar portion of the optic nerve, and because it contains melanocytes that absorb excess light and prevents damage to surrounding structures, it may play a role in the pathophysiology of many vision threatening retinal diseases such as Agerelated macular degeneration (ARMD), central serous chorioretinopathy (CSC), choroidal detachments as well as RPE detachments and tumours (*Gupta et al., 2014*).

Fundus imaging has become an integral part of ophthalmology practice. The improvements in our ability to view and document the posterior pole of the eye has increased our knowledge of ocular anatomy, sharpened our detection of pathological processes, increased our understanding of disease progression, enhanced our analysis of treatment efficacy, and broadened our research initiatives (*Friberg et al.*, 1987).

However, the normal pigmentation of the choroid and overlying RPE usually impedes full-thickness visualization of the choroid by ophthalmoscopy, fundus photography or the conventional OCT. So, the choroid and the retinal pigment epithelium are not easily accessed on

clinical examination, although they are involved in fundamental physiological functions, as well as affected by a number of pathological conditions (*Ferrara et al.*, *2010*).

Today, many techniques for choroidal and RPE imaging exist. For example, intravenous dyes (fluorescein and indocyanine green) can be used with optical filters to highlight the choroid circulation and to delineate pathological changes in these tissues (*Holz and Spaide*, 2010). In addition, optical coherence tomography uses principles of interferometry to create cross-sectional analysis of the choroid and RPE (*Puliafito et al.*, 1995).

Another modality, scanning lasers use a raster pattern to reproduce fundus anatomy (Holz and Spaide, 2010).

Also, Fundus autfluorescence is a great technique for the ophthalmologists to visualize these remote tissues (*Grey et al., 2011*).

And finally, ultrasonography, can be used to detect choroidal lesions

using sound waves at specific frequencies (Byrne and Green, 2002).

The diversity of these techniques provides the ophthalmologist with a large inventory tools that can be used individually or in combination to enhance the evaluation, diagnosis, and treatment of choroid and/or RPE pathology (*Hewick et al.*, 2004).

Aim of work

To review the recent trends in different imaging techniques used for choroid and RPE imaging with advantages of each, uses & its limitation.