

Effect of Two Natural Irrigations on Canal Cleanliness and Microhardness of Root Canal Dentin

Thesis Submitted to Faculty of Dentistry
Ain Shams University
For Partial Fulfillment of the Requirements of the
Master Degree in Endodontics

By **Ahmed Moustafa Mohamed Ali**

B.D.S. Faculty of Oral and Dental Medicine (Misr University for Science and Technology, 2007)

بسم الله الرحمن الرحيم

(يرفع الله الذين آمنوا منكم والذين أوتوا العلم درجات)

صدق الله العظيم

سورة المجادله: ١١

Supervisors

Dr.Abeer A.Elhakim El Gendy

Associate professor of Endodontics

Faculty of dentistry

Ain Shams University

Dr.Medhat Taha El Faramawy

Lecturer of Endodontics

Faculty of dentistry

Ain Shams University

Dedication

I dedicate my Master thesis to my family the source of encouragement and inspiration throughout my life.

I dedicate it also to my friends for their great support and help at all times.

Acknowledgement

First of all thanks to **Allah** the most kind and merciful.

I am greatly honored to express my thankful gratitude to **Dr. Abeer Abd-Elhakim El Gendy**, Associate professor of Endodontics, Faculty of Dentistry, Ain Shams University for her great effort, guidance, support and help.

I would like to express my thankful gratitude to **Dr. Medhat Taha El Faramawy**, Lecturer of Endodontics, Faculty of Dentistry, Ain Shams University for his cooperation, support and valuable comments throughout this work.

List of Contents

Title	Page No.
List of Figures	vi
List of Tables	viii
Introduction	1
Review of Literature	3
• Herbal irrigants	3
• Root canal cleanliness	9
• Root canal dentin Microhardness	16
Aim of the Study	34
Materials and Methods	35
Results	49
Discussion	71
Summary & conclusion	78
References	81
Arabic Summary	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	(A); Propolis powder, (B); The solvent Dimethyl Sulfoxide (DMSO), (C); Propolis as an irrigation solution after filtration	37
Figure (2):	(A); Curcumin powder, (B); The solvent Dimethyl Sulfoxide (DMSO), (C); Curcumin as an irrigation solution after filtration	38
Figure (3):	Photograph of the split roots after root canal Instrumentation	40
Figure (4): Figure (5):	Stereomicroscope	40 41
Figure (6):	Root sections mounted on metallic stubs and coated with gold	42
Figure (7):	sputter coater	43
Figure (8):	Scanning electron microscope attached with EDX Unit	43
Figure (9):	Tooth half embedded in acrylic resin	44
Figure (10):	(A), (B); Wax basin-like model with diameter 35mm, (C), (D), (E); Application of propolis, curcumin and NaOCl irrigations respectively in the basin-like model of pink wax	45
Figure (11):	Vicker's microhardness tester	46
Figure (12):	Sample testing with microhardness indenter	47
Figure (13):	Bar chart showing effect of different irrigants on different thirds	52
Figure (14):	Bar chart showing mean values of average amount of debris of different irrigants on the overall of the root canal	53
Figure (15):	Bar chart showing effect of same irrigant (Propolis) on root canal cleanliness at different thirds	54
Figure (16):	Bar chart showing effect of same irrigant (Curcumin) on root canal cleanliness at different thirds	55
Figure (17):	Bar chart showing effect of same irrigant (NaOCl) on root canal cleanliness at different thirds	56
Figure (18):	Bar chart showing mean values of average amount of debris of different irrigants at same root canal third	57

T1 (4.0)	A C T C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Figure (19):	A, C, E: Stereophotomicrographs (magnification 12X)	
	of root canal walls irrigated with Propolis at the	
	Cervical (A), Middle (C) and Apical (E) thirds. B, D, F:	
	Scanning electron microscope images magnification	
	1000X of same samples irrigated with Propolis at the	
	Cervical (B), Middle (D) and Apical (F) thirds	59
Figure(20):	A, C, E: Stereophotomicrographs (magnification 12X)	
	of root canal walls irrigated with Curcumin at the	
	Cervical (A), Middle (C) and Apical (E) thirds. B, D, F:	
	Scanning electron microscope images magnification	
	1000X of same samples irrigated with Curcumin at the	
	Cervical (B), Middle (D) and Apical (F) thirds	60
Figure(21):	A, C, E: Stereophotomicrographs (magnification 12X)	
g • () •	of root canal walls irrigated with 2.5% NaOCl at the	
	Cervical (A), Middle (C) and Apical (E) thirds. B, D, F:	
	Scanning electron microscope images magnification	
	1000X of same samples irrigated with 2.5% NaOCl at	
	the Cervical (B), Middle (D) and Apical (F) thirds	61
Figure (22):	Bar chart showing mean values of microhardness of	OI.
Figure (22).	different irrigants at different thirds	65
Figure (23):	Bar chart showing mean values of microhardness of	03
Figure (23).	different irrigants on the average of overall of the root	
	canal	66
Figure (24):	Bar chart showing mean values of microhardness of	OO
Figure (24):		67
Figure (25).	same irrigant (Propolis) at different thirds Bar chart showing mean values of microhardness of	07
Figure (25):	e	60
E: (20).	same irrigant (Curcumin) at different thirds	68
Figure (26):	Bar chart showing mean values of microhardness of	60
E: (25)	same irrigant (NaOCl) at different thirds	69
Figure (27):	Bar chart showing average mean of different irrigants	70
	on microhardness at same third	70

List of Tables

Table No	Title	Page No.
Table (1):	Sample Classification	36
Table (2):	Descriptive statistics for debris percentage	50
Table (3):	Mean and standard deviation (SD) of effect of different irrigants on different thirds	51
Table (4):	Mean and standard deviation (SD) of average amount of debris of different irrigants on the overall of the root canal	52
Table (5):	Mean and standard deviation (SD) of effect of same Irrigant (Propolis) on canal cleanliness at different thirds	53
Table (6):	Mean and standard deviation (SD) of effect of same irrigant (Curcumin) on canal cleanliness at different thirds	54
Table (7):	Mean and standard deviation (SD) of effect of same irrigant (NaOCl) on canal cleanliness at different thirds	55
Table (8):	Mean and standard deviation (SD) of average amount of debris of different irrigants at same root canal third	56
Table (9):	Descriptive statistics for microhardness	63
Table (10):	Mean (kgf/mm ²) and standard deviation (SD) values of microhardness of different irrigants at different thirds	64
Table (11):	Mean (kgf/mm ²) and standard deviation of microhardness of different irrigants on the average of overall of the root canal	65

Table (12):	Mean (kgf/mm²) and standard deviation (SD)values of microhardness of same irrigant (Propolis) at different thirds	66
Table (13):	Mean (kgf/mm ²) and standard deviation (SD) values of microhardness of same irrigant (Curcumin) at different thirds	67
Table (14):	Mean (kgf/mm ²) and standard deviation (SD) values of microhardness of same irrigant (NaOCl) at different thirds	68
Table (15):	Mean (kgf/mm ²) and standard deviation (SD) of average of different irrigants on microhardness at same third	69

INTRODUCTION

Microorganisms and their by-products are considered to be the primary etiologic agents in endodontic diseases. The objective of endodontic treatment is to prevent or eliminate infection within the root canal. In every root canal system there are spaces that cannot be cleaned mechanically and where cleaning is dependent on thorough chemo mechanical debridement of pulpal tissue, dentin debris, and infective microorganisms. Infection control is critical for the success of nonsurgical endodontic treatment.

Irrigation is complementary to instrumentation in facilitating the removal of pulp tissue and/or microorganisms. There are a number of ideal requirements of a root canal irrigant. It should: a) have a broad antimicrobial spectrum and high efficacy against anaerobic and facultative microorganisms, b) dissolve necrotic pulp tissue remnants, c) inactivate endotoxin, d) prevent the formation of a smear layer during instrumentation or dissolve it, e) be systemically nontoxic, f) be non caustic to periodontal tissues and g) be little potential to cause an anaphylactic reaction. (1)

Sodium hypochlorite has remained a popular root canal irrigant because of its antimicrobial potential and its ability to dissolve organic matter. But it possesses certain disadvantages such as: a) high toxicity, b) unpleasant taste, c) inability to remove the smear layer, d) reduction in elastic modulus and flexural strength of dentin, (2) e) corrosive to instruments, (3) f) staining of instruments and g) burning of surrounding tissues. (4)

Owing to the potential side effects, safety concerns and ineffectiveness of conventional allopathic formulations all of these have prompted researchers to look for natural alternatives. Herbal or natural products have become more popular today due to their high antimicrobial activity, biocompatibility, anti-inflammatory and anti-oxidant properties. From these natural plant extracts are Curcumin (Cu) and Propolis. Curcumin (Cu) is a diferuloyl methane present in extracts of the plant (turmeric or rhizome). Curcuminoids are responsible for the yellow color of turmeric. They are derived from turmeric by ethanol extraction. Cu longa contains three major curcuminoids (approximately 77% Cu, 17% demethoxycurcumin and 3% bis demethoxycurcunin). Various studies showed that Cu has antioxidant, anti-inflammatory, antifungal and antibacterial activities.

Propolis (bee glue) is a resinous hive substance produced by honeybees from products collected from plants. In general, it is composed of 50% balsams and resins, 30% wax, 10% essential oils, 5% pollen and 5% of various other substances like sugars, vitamins, etc. Bees modify propolis by β -glucodiases, enzymes from hypopharyngeal glands, during collection and processing. It is known to possess valuable antimicrobial, antiviral, antifungal, local anesthetic, antiulcer, immunostimulating, hypotensive and cytostatic properties. The effect of these materials on microhardness and canal cleanliness is still unclear and needs to be investigated.

REVIEW OF LITERATURE

• Herbal irrigants:

Al-Qathami and Al-Madi ⁽⁵⁾ compared the anti-microbial activity of propolis with that of sodium hypochlorite in a root canal system. Forty-nine extracted human teeth with large carious lesions reaching the pulp were instrumented using step-back technique. They used Propolis, sodium hypochlorite and saline as irrigants. Microbiological samples were taken from the teeth immediately after accessing the canal and after instrumentation and irrigation. They concluded that propolis has antimicrobial activity equal to that of sodium hypochlorite.

Murray et al ⁽⁶⁾ compared in vitro the effectiveness of Morinda citrifolia juice (MCJ) with sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) to remove the smear layer from the canals of endodontically instrumented teeth. Sixty extracted, single-rooted, permanent premolar teeth with a single canal were inoculated with Enterococcus faecalis at 37°C in a CO₂ atmosphere for 30 days. Irrigation was provided by MCJ, NaOCl, CHX, MCJ/CHX, followed by a final flush of 17% ethylenediaminetetraacetic acid (EDTA). The teeth were then examined by scanning electron microscopy for the removal of smear layer. They found that the most removal of smear layer occurred with MCJ and NaOCl, both with a rinse of 17% EDTA where both completely remove up to 80% of the smear layer from some aspects of the root canal. They concluded that MCJ was more effective than CHX for removing smear layer. MCJ appears to be the first fruit juice to be alternative to NaOCl as an intracanal irrigant.

Kandaswamy et al ⁽⁷⁾ investigated the antimicrobial activity of 2% chlorhexidine gel, propolis, Morinda citrifolia juice (MCJ), 2% povidone

Iodine (POV-I), and calcium hydroxide on Enterococcus faecalis-infected root canal dentine at two depths (200 um and 400 um) and three time intervals (day 1, 3 & 5). 180 extracted human teeth were infected for 21 days with E. faecalis. Samples were divided as: Group I (Saline), Group II (Propolis), Group III (MCJ), Group IV (2% povidone Iodine), Group V (2% Chlorhexidine Gel), Group VI (Calcium hydroxide). Dentine shavings were collected at depths (200 um and 400 um), and numbers of colony forming units were determined. They found that colony-forming units number was statistically significant in all groups compared to Saline group. Group V (chlorhexidine gluconate) (100%) produced better antimicrobial efficacy followed by 2% POV-I (87%), Propolis (71%), MCJ (69%) and Calcium hydroxide (55%). There was no significant difference between Propolis and MCJ. They concluded that Propolis and MCJ were effective against E. faecalis in dentine of extracted teeth.

Costa et al (8) evaluated the antimicrobial activity and the root canal cleaning ability of plant extracts used in irrigation solutions. They examined Aroeira-da-praia and the Quixabeira hydroalcoholic extracts, of 2.5% Sodium hypochlorite (NaOCl) and of 0.12% Chlorhexidine against Enterococcus faecalis. Root canal cleanliness was examined by Scanning Electron Microscopy (SEM). Twenty one single-rooted human teeth were divided into three groups: 1) 50% Aroeira-da-praia; 2) 50% Quixabeira and 3) a combination of 2.5% Sodium hypochlorite + 17% EDTA. They that all solutions showed antimicrobial activity against Enterococcus faecalis. The SEM analysis revealed that higher and lower degrees of surface cleaning were in the three groups, respectively for the coronal and apical thirds, where Quixabeira has the greatest efficiency in removing the smear layer in the apical third. They found that all agents presented antimicrobial activity against E. faecalis. None, was able to

completely remove the smear layer in the different thirds of the canal.

Kulkarni et al ⁽⁹⁾ evaluated extraction method of turmeric using Soxhlet extractor. Isolation and purification of curcuminoids was carried out by column chromatography. The quantification of curcumin in maximum resultant extract (by methanol) was performed by pre validated HPLC methodology. Percentage of curcumin by HPLC was 12.39%. Extracted curcuminoids were subjected to spectrophotometer to check it's percentage amount in extracted sample. Different solvent were used for extraction, among them methanol showed maximum yield of each curcuminoids. Separation of curcuminoids were tested in TLC chloroform: methanol at 95:5 showed RF value at 0.67, 0.6, 0.506 as curcumin, dimethoxycurcumin, bis demethoxycurcumin respectively. The methanol extract was subjected to silica gel column chromatography with chloroform: methanol at increasing polarity followed by TLC to check purity of extracted curcumin.

Silva et al ⁽¹⁰⁾ evaluated the efficacy of chitosan compared with different chelating agents, and quantified, by atomic absorption spectrophotometry with flame (AASF), the concentration of calcium ions in these solutions after irrigation. 25 canines prepared by crown-down technique. The teeth were divided into 5 groups (n = 5): 15% EDTA, 0.2% chitosan, 10% citric acid, 1% acetic acid and control. Roots were split longitudinally and examined by SEM for evaluation of smear layer removal. They found that 15% EDTA, 0.2% chitosan and 10% citric acid had similar smear layer removal with a significant difference from 1% acetic acid and the control group. There was no significant difference between the remaining smear layer in the middle and apical thirds. The highest calcium ion concentration was with 15% EDTA and 0.2% chitosan, with no significant difference. The lowest calcium ion