Latarjet procedure for treatment of recurrent anterior shoulder dislocation.

Thesis

Submitted for partial fulfilment of the M.D. in Orthopeadic surgery

By

Dr. Hatem Mohammed Abo-elmagd

M.Sc. Orthopeadic Surgery Faculty of Medicine - Ain shams University

Supervised By

Prof. Dr. Ahmed Amin Galal

Professor of Orthopeadic Surgery Faculty of Medicine - Cairo University

Prof .Dr. Sherif Mammdoh Abdelhafez Amr

Professor of Faculty of Medicine - Cairo University

Dr. Waleed Reda Mohammed

Lecturer of of Orthopeadic Surgery Faculty of Medicine - Cairo University

> Faculty of medicine Cairo University 2015

First thanks to **ALLAH** to any success achieved in my life.

I wish to express my deepest thanks, gratitude and appreciation to *Prof. Dr. Ahmed Amin Galal*, Professor of Orthopedic surgery, Faculty of Medicine - Cairo University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special appreciation to Prof *Dr. Sherif Mammdoh Abdelhafez Amr*, Professor of Orthopedic surgery, Faculty of Medicine - Cairo University for her sincere efforts and fruitful encouragement.

I am deeply thankful to *Dr. Waleed Reda Mohahamed*, Lecturer of orthopedic surgery care, Faculty of Medicine - Cairo University, for his great help, outstanding support, active participation and guidance.

Also I would like to thank my **Family and my Colleagues** who support me to finish this work and for their great support.

➢ Hatem Mohammed Abo−Elmagd

<u>ABSTRACT</u>

In this study The majority of problems encountered in the modified Latarjet procedure postoperatively are related to inadequate surgical technique, improper drilling or graft harvesting may lead to intraoperative graft fracture, Our results close to those reported in most published series, in terms of complication rates and postoperative functional scores. Laterjet procedure is good option in patients who wish to practice a competitive sport and are poor candidates for arthroscopic Bankart repair due to bony defects. Labrum saving during laterjet procedure in shows better results as regard patient range of movement and musle power and proprioception compared with those patients whom undergone operation without labrum saving. Using of two screws is better than one screw in fixation of the coracoid graft and gives better results as regard healing.

Keywords:_

- H.A.G.L
- IGHL
- Latarjet procedure

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	2
Review of Literature	
Anatomy	4
Biomechanics	11
Pathological anatomy	23
Diagnosis	32
Patients And Methods	52
Results	77
Discussion	94
Case Presentation	103
Conclusion	121
Summary	122
References	131
Arabic Summery	

List of Tables

Table No.	Title	Page No.	
Table (1): Beighton	scale for ligamentous la	xity	37
Table (2): I.S.I.S sc	ore		52
Table (3): Sex of pa	tients percentage of eac	h group	53
Table (4): Affected	side percentage of each ş	group	54
Table (5): Dominan	nt side percentage of each	ı group	55
Table (6): Heavy w	ork percentage of each g	roup	57
Table (7): Amount	of humeral head loss	••••••	59
Table (8): Amount	of Glenoid bone loss	••••••	61
Table (9):Rowe sco	re	••••••	66
Table (10): Saving	labrum percentage	••••••	83
Table (11): Number	r of scews percentage		85
Table (12): Graft p	osition percentage	••••••	87
Table (13): Graft u	nion percentage	••••••	89
Table (14): closed-l	kinetic chain activity tes	t	91
Table (15): Chi-Squ	ıare Tests		92
` ′	•	and other studies as regard t operative score	
Table (17): Compar	rison between our study	complication and other stu	ıdies98

List of Figures

Fig. No.	Title	Page No.
Fig (1): Should	der antomy Anterior view	3
0	der antomy interior view	
• •	der antomy sagital view	
0	d and soft tissue restrains	
0	vity- compression	
0 . ,	id concavity	
• •	id center line	
• •	idogram	
_	ity ratio	
	ity angle	
	ers of rotation	
Fig (12): Musc	cle force	19
Fig (13): Hill-	Sachs defect	22
Fig (14): Artic	eular arc mismatch	23
Fig (15): Enga	ging Hill-Sachs lesion	24
Fig (16): Glene	oid track and Hill-Sachs lesion	25
Fig (17) CT sc	an of large fracture involving anterior	glenoid:26
Fig (18): Bank	cart lesion	27
Fig (19): Arth	roscopic view	28
Fig (20): ALPS	SA lesion	28
Fig (21): Apley	y "scratch"test	33
Fig (22): Passi	ve flexion of shoulder	33
Fig (23): Passi	ve extension of shoulder	33
Fig (24): Passi	ve movement testing of shoulder abdu	ction34
Fig (25): Passi	ve internal rotation	35
Fig (26): Passi	ve external rotation	35
Fig (27): ligam	nentous laxity	36
Fig (28): Hype	erlaxity of the elbows	37
Fig (29): Ante	rior instability test	39
Fig (30): Appr	ehension test	39
Fig (31): Reloc	cation test	41
Fig (32): Ante	rior Release Test	41
0 , ,	erior drawer of the shoulder	
Fig (34): Sulcu	ıs sign	43
<u>Fig</u> (35): Ante	roposterior view of shoulder	44
0 , ,	AP view of the shoulder	
_	ary view	
Fig (38): CT s	scan of the glenohumeral joint	47
Fig (39): 3D C	T reconstruction showing a posterola	teral humeral head defect47

Fig (40): 3D CT reconstruction showing anterior glenoid avulsion	.47
Fig (41): MRI of glenoid.	.50
Fig (42): Sex distubution percentage	.54
Fig (43): Affected Side percentage	.55
Fig (44): Dominant Side percentage	.56
Fig (45): Heavy work percentage	.58
Fig (46): Amount of Humeral head loss	.59
Fig (47):Graph of Humeral head loss	.60
Fig (48): Amount of glenoid loss.	.61
Fig (49): Graph of Humeral head loss	.61
Fig (50): Draping	.68
Fig (51): skin incision	.69
Fig (52): approach	.69
Fig (53): coracoid process ostotmy	.70
Fig (54): coracoid process decortication.	.70
Fig (55):. vertical arthrotomy	.71
Fig (56): Coracoid fixation.	.72
Fig (57): Compression of the graft	.75
Fig (58): Stability graph.	.76
Fig (59): Mobility graph	.77
Fig (60). Function graph	.78
Fig (61): Postoperative clinical score	.79
Fig (62):Dynanometer	.80
Fig (63):Patient assessment by Dynanometer	.80
Fig (64):Inclinometer	.81
Fig (65): Patient assessment by Inclinometer	.82
Fig (66): Saving the labrum graph	.83
Fig (67): Number of screws graph	.85
Fig (68): Graft union graph	.86
Fig (69): Graft position graph	.87
Fig (70): Bernageau view graph	.88
Fig (71):Graft union graph	.89
Fig (72): closed-kinetic chain activity test	.90
Fig (73): closed-kinetic chain activity graph	.91

List of abbreviations

GHL	Glenohumeral ligament	5
CHL	Coracohumeral ligament	6
CAL	Coracoacromial ligament	7
IGHL	Inferior Glenohumeral ligament	27
A.L.P.S.A	Labroligamentous periosteal sleeve	28
H.A.G.L	Humeral Avulsion of the Glenohumeral ligament	29
B.H.A.G.L	Bony Humeral Avulsion of the Glenohumeral ligament	29
E.R	External Rotation	40
A.P	Antroposterior	44
C.T	Computed Tomography	46
3D	Three Dimention	47
M.R.I	Magnetic Resonance imagining	48
I.S.I.S	Instability severity score index	51
RT	Right	54
Lt	left	54
\mathbf{W}	Width	60
Н	height	60
Pst:	Post operative	76
Sec	Second	100

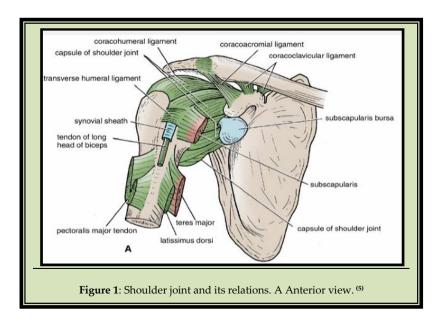
Introduction

The shoulder is the most mobile joint in humans; its wide range of movement predisposes to a high susceptibility to dislocation. 50% of all joint dislocations involve the shoulder, particularly in young people. 95% of shoulder dislocations are anterior-inferior; posterior dislocations account for 3% and other types 2%. Dislocations of the shoulder may be traumatic or non-traumatic. When traumatic, they result from a direct force on the joint or an excessive vectoral force inducing humeral head dislocation. Non-traumatic dislocations may be associated with a dysplastic glenoid. [1]

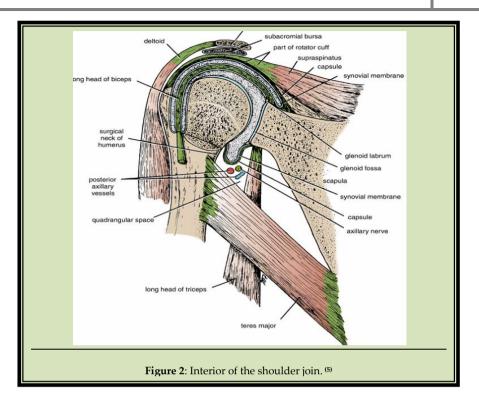
Recurrent anterior shoulder dislocation is a common diagnosis in young, active people. Surgical stabilization of the glenohumeral joint is indicated when recurrent dislocation causes discomfort or when pathology is involved. Operative treatments vary, but all have the purpose of reinforcing the anterior and inferior aspect of the glenohumeral joint. [2]

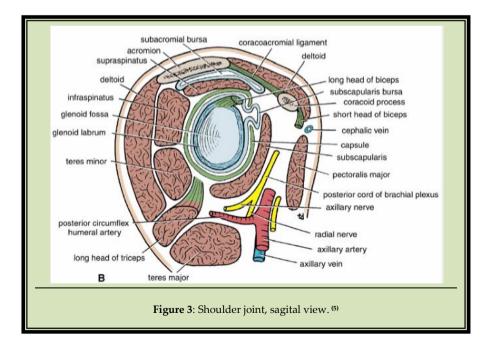
Latarjet procedure may be a superior open surgical treatment for recurrent anterior glenohumeral dislocation, so long as the surgeon is familiar with the technique. Although it is a non anatomical repair, it provides desirable functional resultwith

respect to subjective postoperative range of motion, stability, and subjective scorings. [3]


Latarjet procedure provides better terms of stability and range of motion obtained with a bankart –type repair long term experience with the procedure make it easy ,safe, and quick to perform .no need for immobilization or motion limitation during rehabilitation, Faster resumption of activities of daily living and all types of sport more quickly than with a capsular repair. [4]

Aim of the work


This study aims to analyze the functional and radiological outcome of the latarjet procedure in patients with recurrent anterior glenohumeral dislocation.


Shoulder Joint

- > **Articulation:** This occurs between the rounded head of the humerous and the shallow, pear-shaped glenoid cavity of the scapula. The articular surfaces are covered by hyaline articular cartilage, and the glenoid cavity is deepened by the presence of a fibrocartilaginous rim called the glenoid labrum. (5)
- > **Type**: Synovial ball-and-socket joint.
- > **Capsule**: This surrounds the joint and is attached medially to the margin of the glenoid cavity outside the labrum; laterally it is attached to the anatomic neck of the humerus (**Fig 1**). The capsule is thin and lax, allowing a wide range of movement. It is strengthened by fibrous slips from the tendons of the subscapularis, supraspinatus, infraspinatus, and teres minor muscles (the rotator cuff muscles). (5) (**Figures 2, 3**) (5)

Review of literature anatomy

Review of literature anatomy

Ligaments: There are three focal areas of thickening of the capsule, known as the glenohumeral ligaments (GHL), that act as "check-reins" to excessive rotation or translation of the humerus. Running from the inferior aspect of the humeral head, or the humeral neck, these structures insert or coalesce with the glenoid labrum. (*)

- Superior Glenohumeral Ligament: The superior GHL, running from the supraglenoid tubercle above the glenoid face to the lesser tuberosity of the humerus, has a parallel course to the coracohumeral ligament. The two are felt to act together as a restraint to inferior translation and external rotation of the humeral head with the arm resting at one's side (position of adduction). (6)
- Middle Glenohumeral Ligament: The middle glenohumeral ligament is the most variable, with some patients having a so-called "cord-like" middle GHL, known as a "Buford complex", and up to 30% of patients being deficient of this ligament altogether. It also runs from the supraglenoid tubercle to the lesser tuberosity, although some fibers coalesce with the subscapularis before its insertion on the lesser tuberosity. (7) During abduction, the middle GHL becomes taut, limiting further external rotation of the

Review of literature anatomy

humerus in this position. Maximal tension in the middle GHL is reached at approximately 45° of abduction, at which point it is also able to resist anterior translation of the humeral head in this position. ⁽⁷⁾

- is a hammock-like structure, with origins from both the anteroinferior and posteroinferior aspects of the glenoid. This ligament has two separate bands, an anterior and posterior band with an intervening segment of capsule. The anterior band inserts at the inferior margin of the articular surface of the humeral head, just below the lesser tuberosity. In abduction with the arm externally rotated, the so-called 'position of apprehension', the anterior band of the inferior GHL moves to the front of the shoulder where it is maximally taut and serves to resist anterior translation of the humeral head. (8)
- Coracohumeral Ligament: The coracohumeral ligament (CHL) is a broad ligament originating from the superior portion of the joint capsule at the base of the coracoid process and inserting on the greater tuberosity. This acts in conjunction with the superior GHL, as described above, along with the anterior joint capsule to make up the "rotator interval", which functions to resist inferior translation of the humeral head in adduction.