AIN SHAMS UNIVERSITY

Faculty of Computer and Information Sciences Department of Computer Science

DEVELOPING AN IMAGE ANALYSIS ALGORITHMS FOR COMPUTER-AIDED DETECTION MEDICAL SYSTEMS

Thesis submitted to the Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

> In partial fulfillment of the requirements for the degree of Master in Computer Science

> > BY

Heba Mohsen Mohamed Mosaad

B.Sc. in Computer Science (2006)
Faculty of Computer & Information Sciences, Ain Shams University
Demonstrator at Computer Science Department, Faculty of Computer
and Information Technology, Future University, Cairo, Egypt

Under Supervision of

Prof. Abdel-Badeeh Mohamed Salem

Professor in Computer Science Department Faculty of Computer & Information Sciences, Ain Shams University

Dr. El-Sayed Abdel-Rahman

Associate Professor in Physics Department Faculty of Science, Ain Shams University

Dr. Haytham El-Messiry

Lecturer Computer Science Department Faculty of Computer & Information Sciences, Ain Shams University

Acknowledgment

During our research and development we have faced some problems and struggles but we finally managed it. In the first place, I would like to thank *Allah* for helping me to accomplish this work that without *Him* nothing in this world is possible.

I am strongly grateful to Prof. Abdel-Badeeh M. Salem for his continuous support and great care, valuable advises, and helpful guidance during the work.

I wish to express my deep and sincere gratitude to Assoc. Prof. Dr. El-Sayed Abdel-Rahman for his help and guidance that have lightened my way through this work and give it the suitable final form.

Finally, I am most grateful to my parents for their full support and encouragement that had great effects on me and special thanks for my brothers Mohamed and Amr for their just in time help.

Publications

- 1. Heba Mohsen, El-Sayed El-Dahshan, Abdel-Badeeh Salem, "Comparative Study of Intelligent Classification Techniques for Brain Magnetic Resonance Imaging" in the proceeding of the 11th International Scientific Conference on Informatics INFORMATICS 2011, 16-18 November 2011, Rožňava, Slovakia, pp. 175-178.
- 2. Heba Mohsen, El-Sayed El-Dahshan, Abdel-Badeeh Salem, "A machine learning technique for MRI brain images" in the 8th International Conference on Informatics and systems INFOS, Cairo University, 14-16 May 2012, Cairo, Egypt.
- 3. Heba Mohsen, El-Sayed El-Dahshan, Kenneth Revett, Abdel-Badeeh Salem, "A Comparative study on Brain Magnetic Resonance Images Segmentation techniques" in the 8th Annual International Conference on Computer Science and Information Systems, 21-24 May 2012, Athens, Greece.

Abstract

With the advance of computational intelligence and machine learning Techniques, Computer-aided Detection/Diagnosis (CAD) attracts more attention in the field of brain tumor detection and diagnosis. It has become one of the major research subjects in medical imaging and diagnostic radiology. Brain CAD systems can provide radiologists with a 'second opinion' to assist them in the early detection and diagnosis of brain tumors. Consequently, radiologists expect that CAD systems can improve their diagnostic abilities based on synergistic effects between the radiologist and the computer with medical image analysis and machine learning techniques.

The use of computer technology in medical decision support is now widespread and pervasive across a wide range of medical area, such as brain tumors. MRI is often the medical imaging method of choice when soft tissue delineation is necessary and the most important advantage of MR imaging is that it is a non-invasive technique. Thus, MRI is considered the most reliable method for the early detection of brain tumors for yielding a great deal of information that the radiologist has to analyze and evaluate comprehensively in a short time. CAD-Systems help scan MR images for typical appearances and to highlight conspicuous sections (possible diseases). Fully automatic normal and diseased human brain classification can be obtained from MRI; which is a great importance for research and clinical studies.

Many proposed techniques developed for the aim of automatic detecting and diagnosing the brain tumor from Brain MR Images to be the basis for Brain CAD systems which can scan a number of brain MRI in a short time to aid the doctors and radiologists in drawing quicker and easier inferences about the condition of the brain under study. These systems have multiple phases to perform the diagnoses. In general, Computer-aided analysis of medical images obtained from different imaging systems such as MRI involves four basic

steps: a) image filtering or preprocessing, b) image segmentation, c) feature extraction, and d) classification or analysis of extracted features by a classifier or pattern recognition system.

In this study we have developed a hybrid intelligent machine learning technique for detecting brain tumors using information from Brain MRI based on four algorithms including segmentation, feature extraction, feature selection, and classification. The developed technique statrs by image segmentation for defining the ROI in the brain MRI using the Feedback pulse-coupled neural network (FPCNN). The highlighted parts form segmentration step (ROI) is used to provide a better classification results. Then the discrete wavelet transform (DWT) is employed on the segmented regions for feature extraction purpose, and for the excessive number of features provided with the DWT, the principle component analysis (PCA) is applied for feature selection and to reduce the dimensionality of the wavelet coefficients by removing redundant features. The reduced features are sent to backpropagation neural network (BPNN) to classify inputs into normal or abnormal based on feature selection parameters.

Experimental results demonstrate the effectiveness of the developed technique in detecting brain tumors. With A preliminary evaluation on a real MRI brain images dataset of 101 MRI, the developed technique classification accuracy was 99%, which demonstrates its robustness and validity that could be applicable in real life scenarios in order to help non-expert doctors to detect brain tumors. Moreover, to emphasize the developed technique effectiveness, a comparative study was made with the recent published techniques in the domain field.

Table of Contents

Acknowledgment	II
Publications	III
Abstract	IV
Table of Contents	VI
List of Figures	IX
List of Tables	XI
List of Abbreviations	XII
Chapter 1 Introduction	1
1.1 Objectives	5
1.2 Methodology	6
1.3 Contribution	7
1.4 Thesis Organization	8
Chapter 2 Computer-Aided Detection and Diagnos	i s systems 9
2.1 Introduction	10
2.2 CAD systems development	11
2.3 Medical imaging modalities	17
2.4 CAD Goals	18
2.5 A Survey on CAD systems	20
2.6 Brain tumors	22
2.7 Brain imaging techniques	24
2.8 Summary	26
Chapter 3 Segmentation techniques and algorithm	ıs 27
3.1 Introduction	28
3.2 Segmentation techniques and algorithms	30
3.2.1 Thresholding	31

3.2.2 Edge-based methods	32
3.2.3 Region-based methods	33
3.2.4 Watershed segmentation	34
3.2.5 Markov random field models	35
3.2.6 Livewire	36
3.2.7 Active Contour	37
3.2.8 Level set method	39
3.2.9 Atlas-Based Segmentation	41
3.2.10 Self-organizing maps	43
3.2.11 Learning vector quantization	43
3.2.12 Fuzzy C-means	44
3.2.13 Rough Sets	45
3.2.14 Pulse-Coupled Neural Network	47
3.2.15 Feedback Pulse-Coupled Neural Network	50
3.3 Comparative study of Segmentation techniques	s for medical
3.3 Comparative study of Segmentation techniques images	-
	50
images	50 52
images3.4 Theoretical difficulties	50 52
images3.4 Theoretical difficulties3.4.1 Thresholding	50 52 52
images	50 52 52 52
images	50 52 52 52 52 53
images	

4.2 Feature	Extraction techniques and algorithms	59
4.2.1	First-order histogram based features	60
4.2.2	Co-occurrence matrix based features	61
4.2.3	Discrete Wavelet Transform	63
4.3 Classific	ation techniques and algorithms	67
4.3.1	k-Nearest neighbors based classifier	68
4.3.2	Artificial neural network based classifier	69
4.3.3	Support Vector Machine Classifier	70
4.3.4	Kohonen Self-Organized Map Classifier	71
4.4 Compare	ative study of Classification techniques for Brai	n MRI 72
4.5 Theoreti	ical difficulties	75
4.6 Summar	y	77
Chapter 5 detecting tun	The Developed machine learning technors in brain MR images	-
5.1 The pro	posed Methodology	80
5.2 Databa	se	82
5.3 Segmen	tation	89
5.4 Feature	Extraction	91
5.5 Feature	Selection	92
5.6 Classific	cation	93
5.7 Implem	entation	94
5.8 Experin	nental Results and Discussion	97
Chapter 6 C	Conclusions and Future Work	99
6.1 Conclus	sions	100
6.2Future	Work	101
References		102

List of Figures

Figure 1.1 Schematic diagram of a CAD system for medical image interpretation
Figure 1.2 Functional component diagram of a CAD system 5
Figure 1.3 General Structure for the CAD methodology
Figure 2.1 (a) The first CAD system developed at the University of Chicago in 1994 for detection of breast lesions in mammograms 14
Figure 2.1 (b) Mammogram with clustered microcalcifications detected by a CAD scheme
Figure 2.2 Timeline of CAD development [100]
Figure 2.3 Average Annual Age-Adjusted Incidence Rates of Primary Brain and CNS Tumors by Age and Behavior CBTRUS Statistical Report NPCR and SEER Data from 2004-2007
Figure 3.1 Classification of the segmentation methods
Figure 3.2 Over segmentation of watershed algorithm
Figure 3.3 An Example of Level set
Figure 3.4 An Example brain image of representing a rough set
Figure 3.5 PCNN Basic Model
Figure 4.1 The processes of Feature extraction and Classification in ar application
Figure 4.2 The spatial co-occurrence matrix calculation
Figure 4.3 Subband decomposition of DWT implementation
Figure 4.4 Two-level wavelet decomposition
Figure 4.5 k-nearest neighbor Algorithm
Figure 5.1 The proposed methodology of CAD Brain MRI system 80
Figure 5.2 Sample of brain MRI from the database
Figure 5.3 The architecture of the FPCNN

Figure 5.4 Sample of brain MRI from the database after using PCNN	J
Figure 5.5 Applying DWT to Segmented brain MRI	91
Figure 5.6 PCA Algorithm	93
Figure 5.7 The architecture of the FFBPNN	94
Figure 5.8 screenshots of the developed Brain tumors' system	

List of Tables

Table		Major events in diagnostic imaging over the last five decade [13]	
Table		Number of CAD papers related to seven different organs duri 2000 to 2005	_
Table 2	2.3	Medical imaging modalities with some application domains 1	18
Table 2	2.4	Survey on Current Commercial CAD Medical systems	20
Table 2	2.5	Some of the imaging techniques used for the brain	24
Table :	3.1	Segmentation techniques for medical images	51
Table 4	4.1	Classification techniques for Brain MRI	72
Table :	5.1	FPCNN parameters values	90
Table :	5.2	Setting of training and test images	94
Table :	5.3	different Classified Groups	97
Table :	5.4	Classification rates	98
Table :	5.5 '	The Classification accuracy comparison	98

List of Abbreviations

CAD	Computer-Aided Detection
ACD	Automated Computer Diagnosis
MRI	Magnetic Resonance Imaging
ROI	Region Of Interest
PCNN	Pulse-Coupled Neural Network
FPCNN	Feedback Pulse-Coupled Neural Network
WT	Wavelet Transform
DWT	Discrete Wavelet Transform
WPT	Wavelet Packet Transform
PCA	Principle Component Analysis
FFBPNN	Feed Forward Backpropagation Neural Network
PACS	Picture Archiving and Communication System
DSA	Digital Subtraction Angiography
CT	Computed Tomography
PET	Positron Emission Tomography
SPECT	Single Photon Emission Computed Tomography
EEG	Electroencephalography
MEG	Magnetoencephalography
NIRS	Near infrared spectroscopy
Roc	Receiver Operating Characteristic
CR	Computed Radiography
FPD	Flat Panel Detector
MDCT	Multi-Detector Computed Tomography
MRA	Magnetic Resonance Angiography
US	Ultrasound
FFDM	Full-Field Digital Mammography
CARS	Computer Assisted Radiology and Surgery
AAPM	American Association of Physicists in Medicine

RSNA	Radiological Society of North America
CBTRUS	Central Brain Tumor Registry of the United States
CNS	Central Nervous System
MRF	Markov random field
SOM	Self-Organizing Maps
SOFM	Self-Organizing Feature Map
LVQ	Learning Vector Quantization
FCM	Fuzzy C-means
PCM	Prossibilistic C-Mean
AFCM	Alternative fuzzy C-means
PNFCM	Possibilistic Neuro Fuzzy C-Means Algorithm
k-NN	k-Nearest Neighbor
ANN	Artificial Neural Network
FFNN	Feed Forward Neural Network
BP	Backpropagation network
SVM	Support Vector Machine
PD	Proton Density
BAM	Bidirectional Associative Memory
L	ı

Chapter 1

Introduction

In radiology, the task of image interpretation can be broken down into 3 essential parts: detection, description, and differential diagnosis. As medical images came to be acquired or displayed through the use of computers, the possibility of having computers performs any or all of these interpretive steps have been contemplated. This field became known as Computer-Aided Detection/Diagnosis (CAD) [5].

Advances in the area of Artificial Intelligence (AI) and Soft Computing techniques have a tremendous impact on the enhancement of medical images' interpretation and contributed to early diagnosis. Modern medical imaging includes image processing and computer-aided detection/diagnosis (CAD) which is the currently applied computerized analysis of medical images that combine artificial intelligence and digital image processing with radiological image processing. For that, now CAD is a widely used tool in detection and differential diagnosis of abnormalities (e.g. brain tumors) and quantification of disease progress in medical imaging (e.g. brain MRI) [4,6].

Imaging techniques in diagnostics yield a great deal of information, the radiologist has to analyze and evaluate comprehensively in a short time. To detect an abnormality, the radiologist usually performs visual scanning of the images of many healthy subjects. The procedure of image scanning lends itself to CAD, since it is a repetitive, burdensome task involving mostly normal images—a situation prime for oversight errors (e.g. In the case of lesion characterization, complex anatomy, variation in the presentation of benign and malignant states, and the varying abilities of the radiologists may result in interpretation errors)[6].

CAD system aims to assist doctors by drawing attention to regions of interest that may require further review and facilitate the detection and characterization tasks, which reduce cancer missed due to increasing workload, overlooked or data overloaded, enhance the radiologists' capabilities by improving the consistency of the radiologists' image interpretation and reducing the time required for accurate diagnosis [3,6]. Thus with CAD, radiologists use the computer output to provide "second opinion" rather than an output "decision" as the final decision should be made by the radiologists in the process of image interpretation (see Figure 1.1). For that, CAD has become one of the major research subjects in medical imaging and diagnostic radiology.

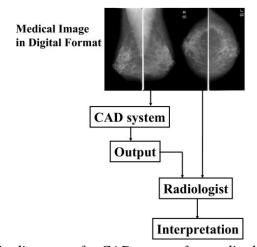


Figure 1.1 Schematic diagram of a CAD system for medical image interpretation

The concept of CAD was established by taking into account equally the roles of radiologists and computers; unlike known from 1960s the concept of automated computer diagnosis (ACD) was based on computer algorithms only. With CAD, the performance by computers (CAD systems) does not have to be comparable to or better than that by radiologists, but needs to be complementary to that by radiologists. For that, as the demands on clinicians grow, the need for CAD products in the radiology market, as in other medical markets, is likely to increase significantly [1].