

Eng. Karim Ehab Ahmed Hassan Hussain

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

Eng. Karim Ehab Ahmed Hassan Hussain

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

In

MASTER OF SCIENCE

Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

Ву

Eng. Karim Ehab Ahmed Hassan Hussain

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

Under Supervision of

Prof. Dr. Amin Mohamed Mobarak

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Taher Mohamed Aboudeif

Mechanical Power Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

By

Eng. Karim Ehab Ahmed Hassan Hussain

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

Approved by the Examining Committee:

Prof. Dr. Amin Mohamed Mobarak

Thesis Main Advisor

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University.

Prof. Dr. Zeinab Saleh Safar

Internal Examiner

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University.

Prof. Dr. Mahmoud Abdelfattah ElKadi

External Examiner

Professor of Mechanical Power Engineering, Faculty of Engineering, Al-Azhar University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

Personal information

Engineer Karim Ehab Ahmed

Address 112 / Sudan St.

Mohandeseen, Giza, (Egypt)

Telephone +20-237606088

E-mail karimehab@live.com

Nationality Egyptian

Date of birth 06 March 1987

Gender Male

Marital status Married

Military status Accomplished (2012)

Other Information

Registration Date 1/10/2012

Awarding Date / / 2017

Degree Master of Science

Department Mechanical Power Engineering

Main Supervisor Prof. Dr. Amin Mohamed Mobarak

Supervisor Dr. Taher Mohamed Aboudeif

Examiners Prof. Dr. Amin Mohamed Mobarak

Prof. Dr. Zeinab Saleh Safar

Prof. Dr. Mahmoud Abdelfattah ElKadi

Mechanical Power Engineering, Faculty of Engineering, Al-Azhar University.

Title of Thesis Parametric Study of a Novel Low Temperature Cycle for Electricity

and Fresh Water Production

Key Words Modeling and Simulation, MSF, Parametric Design, Performance

Optimization, Turbo-vapor Compressor, LP Steam Turbine.

Summary Working on desalination and energy production is needed. And

the best approach is the one which can produce both in parallel. The previous work was "A Novel Combined Low Temperature Cycle for Electricity and Fresh Water Production" Professor Amin Mobarak. Modeling and Simulation was conducted. The study also shows that changing the path of the distillate leaving the MSF plant may be useful. And finally plant optimizing is conducted which shows

the best operating conditions for each environmental condition.

Mobile +20-1141108577

karimehab_1@hotmail.com

Acknowledgments

I would like to thank Prof. Amin Mobarak. He not only did suggest and provide the material, but also supervised the work step by step. I am also indebted to Dr. Taher Mohamed who lent me his expertise and encouragement.

I would also Like to thank the system founders at the British University in Egypt (BUE) for allowing the teaching staff to have a free day per week to work on their research studies.

Special thanks to my parents and my wife for supporting me throughout the work and every single day.

Table of Contents

ACKNOWL	EDGMENTS	l
LIST OF FIG	GURES	VII
NOMENCL	ATURE	XIV
ABSTRACT		XVII
CHAPTER 1	1 INTRODUCTION AND MOTIVATION	<u>1</u>
1.1 GENEI	RAL	1
1.1.1	DESCRIPTION OF THE NOVEL PLANT:	1
1.1.2	THESIS OUTLINE	2
1.2 WATE	ER DESALINATION	3
1.2.1	POPULATION GROWTH PROBLEMS	3
1.2.1	Fresh Water Sources	6
1.2.2	WATER DESALINATION NECESSITY	8
1.2.3	CLASSIFICATION OF DESALINATION TECHNOLOGIES	9
1.2.4	Market share according to desalination technique	10
1.2.5	CONCLUSION	11
1.2.6	SCOPE OF THE PRESENT WORK	11
CHAPTER 2	LITERATURE OF MSF PLANTS MODELING	15
2.1 MULT	TISTAGE FLASH DESALINATION PROCESSES	15
2.1.1	ONCE THROUGH MSF PROCESS	15
2.1.2	Brine circulation MSF process	16
2.1.3	COMPARISON BETWEEN MSF PROCESSES	18
2.1.4	FLASHING STAGE DESCRIPTION	19
2.2 Mode	ELING OF MSF PLANTS	21
2.2.1	SIMPLE MATHEMATICAL MODELS	21
2.2.2	DETAILED STEADY STATE MATHEMATICAL MODELS	22
2.2.3	Model Structure	24
2.2.4	MSF STAGE MODELING	25
CHAPTER 3	MODELING AND SIMULATION	27
3.0 CHAP1	TER OBJECTIVES	27
3.1 METH	OD OF CALCULATIONS	28
3.1.1	INDEPENDENT PARAMETERS	28

3.	.1.2	SELECTED PARAMETERS	28
3.	.1.3	Assumptions	30
3.2	MATH	IEMATICAL MODEL	31
3.	.2.1	Primary calculations	31
3.	.2.2	Main Calculations	34
3.	.2.3	PRIMARY DEPENDENT PARAMETERS	50
3.	.2.4	SECONDARY DEPENDENT PARAMETERS	50
3.	.2.5	OTHER DEPENDENT PARAMETERS	51
3.3	Prog	RAMS USED	52
<u>CHA</u>	PTER 4	RESULTS, DISCUSSION, AND PARAMETRIC STUDY	55
4.0	Снар	TER O BJECTIVES	55
4.1		TS AT BASIC VALUES	
4.	.1.1	COMPARING MASS FLOW RATES	58
-	.1.2	COMPARING THE OTHER 7 PARAMETERS	60
-		METRIC STUDY FOR DESIGN NO.2	
	.2.1	RESULTS WHILE (T _{N+1}) VARIES (FIXING EVERYTHING)	65
	.2.2	RESULTS WHILE (T_0) VARIES (OPTIMIZING (T_{N+1}))	71
	.2.3	RESULTS WHILE (T_N) VARIES (OPTIMIZING (T_{N+1}))	78
	.2.4	RESULTS WHILE (N) VARIES	84
	.2.5	RESULTS WHILE (ΔT_{c}) VARIES	91
	.2.6	RESULTS WHILE (T_c) VARIES	99
	.2.7	RESULTS WHEN (T_{SO}) VARIES	106
	.2.8	RESULTS FOR DIFFERENT (Y_s)	114
		ISSION	
	.3.1	COMPARING THE 2 DESIGNS	124
4.	.3.2	PARAMETRIC STUDY OF DESIGN #2	125
<u>CHA</u>	PTER 5	CONCLUSIONS AND PLANT OPTIMIZATION	129
5.1	PLAN	F PERFORMANCE OPTIMIZATION	129
5.	.1.1	OPTIMIZED RESULTS AT STANDARD ENVIRONMENTAL CONDITIONS	129
5.	.1.2	OPTIMIZED RESULTS AT SUMMER AND HIGH SALINITY	134
5.	.1.3	OPTIMIZED RESULTS AT WINTER AND HIGH SALINITY	139
5.	.1.4	OPTIMIZED RESULTS AT SUMMER AND LOW SALINITY	144
5.	.1.5	OPTIMIZED RESULTS AT WINTER AND LOW SALINITY	149
5.	.1.6	BEST POSSIBLE PLANT PERFORMANCE	154
5.2	CONC	LUSION	159
5.3	FUTUI	RE WORK	160
REFE	RENC	ES	А
<u>APPI</u>	<u>ENDIX</u>	1: SAMPLE OF THE MATLAB CODE	E
APPE	ENDIX	2: RESULTS WHILE FIXING THE OPTIMIZATION PARAMETERS	P

6.1.1	RESULTS WHILE (T_0) VARIES (FIXING (T_{N+1}))	Р
6.1.2	RESULTS WHILE (T_N) VARIES (FIXING (T_{N+1}))	W
6.1.3	RESULTS WHILE (N) VARIES (FIXING T_{N+1})	CC
6.1.4	RESULTS WHEN (TSO) VARIES (FIXING T _C)	II