ENERGY SAVING IN RESIDENTIAL BUILDINGS

 $\mathbf{B}\mathbf{y}$

Eng. Ahmad Sabry Abdel-Aleem Ali An-Naggar

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of Master of Science

In

MECHANICAL POWER ENGINEERING

ENERGY SAVING IN RESIDENTIAL BUILDINGS

By

Eng. Ahmad Sabry Abdel-Aleem Ali An-Naggar

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of Master of Science

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Mechanical Power Engineering Department Faculty of Engineering Cairo University

Dr. Mohamed Aly Ibrahim Mechatronics Engineering Department Faculty of Engineering October 6 University

Dr. Esmail EL-Bialy
Mechanical Power Engineering
Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ENERGY SAVING IN RESIDENTIAL BUILDINGS

 $\mathbf{B}\mathbf{y}$

Eng. Ahmad Sabry Abdel-Aleem Ali An-Naggar

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of Master of Science

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

Professor at Department of Mechanical Power Engineering – Faculty of Engineering- Cairo University

Thesis Advisor and Member

Prof. Dr. Sayed Ahmad Kaseb

Professor at Department of Mechanical Power Engineering – Faculty of Engineering- Cairo University

Member

Prof. Dr. Osama Ezzat Abdel-lattif

Head of Department of Mechanical Power Engineering at Shobra – Faculty of Engineering – Benha University

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer: Ahmad Sabry Abdel-Aleem Ali An-Naggar

Date of Birth: 17 / 2 / 1991

Nationality: Egyptian

E-mail: ahmadsabry1991@gmail.com

Phone.: 01000-987-957

Address: 18 Nageb Mahfouz st. Distinguish district-

6th October city-Giza

Registration Date: 01 / 10 /2012

Awarding Date: 2016

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors : Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Mohamed Ali Ibrahem

Dr. Ismail Mohamed Ali El_Bialy

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Sayed Ahmad Kaseb

Prof. Dr. Osama Ezzat Abdel-lattif

Head of Department of mechanical power engineering at Shobra

Faculty of engineering Benha university

Title of Thesis:

ENERGY SAVING IN RESIDENTIAL BUILDINGS

Key Words: (Energy Saving – Energy Efficiency – Sustainability)

Summary:

This topic represents a considerable section of the total electric energy generated by the electric power stations. A residential building consists of three floors and six apartments of $100 \ m^2$ floor area for each apartment; this building has been drawn by software called "**Design-builder**" that also calculate the cooling load and the heating load for the left house on the 3^{rd} floor (typical floor) on two cases; one with thermal insulation in the walls and the roof and the other without thermal insulation. This research illustrates by using "**Design-builder**" software three comparisons between the sensible cooling load, air-conditioner energy consumption rate, cost of the energy consumed and the CO_2 produced by power plant, due to the energy consumed on the two cases (with thermal insulation and without), at three different room temperatures.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah for giving me wisdom and guidance throughout my life.

I am also most grateful to **Prof.Dr. Essam E.Khalil** and **Dr. Mohamed Aly** whose patience and influence have been instrumental to my success.

Special thank for my father for his great and continuous support through this work and also to my Family.

Also I cannot forget the wonderful assistance from Eng. David Fisher.

Finally, I cannot express; in words; my thanks and gratitude to **Dr. Henar** for her kindness and support.

.

TABLE OF CONTENTS

List of Tables	ii
List of Figures	iii
Symbols and Abbreviations	viii
Nomenclatures	viii
List of abbreviations	X
Abstract	xi
CHAPTER 1 INTRODUCTION	1
1.1.World's Energy	1
1.2. Energy Prospects in Egypt	2
CHAPTER 2 LITERRATURE REVIEW	7
CHAPTER 3 METHODOLOGY AND CALCULATIONS PROCEDURE	12
3.1. General	12
3.2. Methodology	13
3.2.1.Energy Calculation Concepts	13
3.2.2. Energy Estimating & Modeling Methods	14
3.3.Design Builder	17
3.3.1. Overview on Design Builder	17
3.3.2. Design Builder Capabilities	17
3.3.3. Design Builder Dialogs	19
3.3.4. Design Builder Simulation	21
3.3.5. Design Builder Outputs	21
3.4. Data Collection	27
3.5. Program Validation	29
CHAPTER 4 MATHEMATICAL MODELING	34
4.1. Introduction	34
4.2. Fluid Element for Conservation Laws	34
4.3. Substantial derivative	35
4.4. Governing equations	37
4.4.1. Mass conservation	37
4.4.2. Momentum equation	37
4.4.3. Energy equation	39
CHAPTER 5 CASE STUDY	44
5.1. General	44
5.2. Building Orientation	45
5.3 Cooling & Heating loads	46
5.3.1 Cooling load	46
5.3.2 Heating load	62
5.4 Internal CFD Analysis	69
5.4.1 Factors in Human Comfort	69
CHAPTER 6 RESULTS AND DISCUSSION	79
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS	103
REFRENCES	105
APPENDIX A: Residential Cooling and Heating Load Calculations (ASHRAE	
	107
· · · · · · · · · · · · · · · · · · ·	114
ملخص البحث	
Handbook, Fundamentals 2013 SI Edition) APPENDIX B: Result of Manual Cooling Load Calculations	107 114 115

LIST OF TABLES

Table	Description	Page
1.1	Egypt's generated and consumed electricity	2
1.2	Energy consumption in Egypt according to the different sectors	3
1.3	Electricity tariff in Egypt	6
5.1	Best Orientation Analysis	46

LIST OF FIGURES

Figure	Description	Page
1.1	Global energy trends.	1
1.2	World energy consumption.	1
1.3	Percentage of electric consumption in Egypt.	3
1.4	Electric consumption in the industrial and the residential sectors in Egypt from 2009 to 2014.	4
1.5	Primary energy consumption in Egypt by fuel.	4
1.6	Petroleum and other liquids production and consumption in Egypt.	5
1.7	Dry natural gas production and consumption in Egypt.	5
3.1	Main flow chart of Energy Plus program.	13
3.2	Outside surface heat balance.	15
3.3	Inside surface heat balance.	16
3.4	Zone air Heat balance.	16
3.5	Iterative process of computer modelling in Designbuilder	19
3.6	Construction definition in DesignBuilder	20
3.7	Sample data from DesignBuilder	25
3.8	Example of External CFD analysis output- wind pressure study	26
3.9	Example of Internal CFD analysis output- occupant comfort	27
3.10.a	Room configuration, Case 1	29
3.10.b	Room configuration, Case 2	29
3.10.c	Room configuration, Case 3	30
3.11.a	Velocity contour of Case 1 from Phoenics.	31
3.11.b	Velocity contour of Case 1 from DesignBuilder.	31
3.12.a	Velocity contour of Case 2 from Phoenics.	32
3.12.b	Velocity contour of Case 2 from DesignBuilder.	32
3.13.a	Temperature contour of Case 3 from Phoenics.	33
3.13.b	Temperature contour of Case 3 from DesignBuilder.	33
5.1.a	Building Design Configuration.	44
5.1.b	Plan view of the third floor (typical floor).	44

5.2.a	Cross section of the wall for Case 1.	45
5.2.b	Cross section of the roof for Case 1.	45
5.2.c	Cross section of the wall for Case 2.	45
5.2.d	Cross section of the roof for Case 2.	45
5.3.a	Building with East orientation.	46
5.3.b	Building with South orientation.	46
5.4.a	Monthly internal gains for the 3 rd floor with East orientation, Case 1.	47
5.4.b	Monthly internal gains for the whole building with East orientation, Case 1.	47
5.5.a	Monthly internal gains for the 3 rd floor with South orientation, Case 1.	48
5.5.b	Monthly internal gains for the whole building with South orientation, Case 1.	48
5.6.a	Monthly internal gains for the living room with East orientation, Case 1.	49
5.6.b	Monthly internal gains for the living room with East orientation, Case 2.	49
5.7.a	Hourly internal gains for the living room with East orientation, Case 1.	50
5.7.b	Hourly internal gains for the living room with East orientation, Case 2.	50
5.8.a	Comfort in the living room with East orientation, Case 1.	51
5.8.b	Comfort in the living room with East orientation, Case 2.	51
5.9.a	Monthly heat gains for the living room with East orientation, Case 1.	52
5.9.b	Monthly heat gains for the living room with East orientation, Case 2.	52
5.10.a	Hourly heat gains for the living room with East orientation, Case 1.	53
5.10.b	Hourly heat gains for the living room with East orientation, Case 2.	53
5.11.a	Monthly internal gains for Bedroom 1 with East orientation, Case 1.	54
5.11.b	Monthly internal gains for Bedroom 1 with East orientation, Case 2.	54
5.12.a	Hourly internal gains for Bedroom 1 with East orientation, Case 1.	55
5.12.b	Hourly internal gains for Bedroom 1 with East orientation, Case 2.	55
5.13.a	Comfort in Bedroom 1 with East orientation, Case 1.	56
5.13.b	Comfort in Bedroom 1 with East orientation, Case 2.	56
5.14.a	Monthly heat gains for Bedroom 1 with East orientation, Case 1.	57
5.14.b	Monthly heat gains for Bedroom 1 with East orientation, Case 2.	57
5.15.a	Hourly heat gains for Bedroom 1 with East orientation. Case 1.	58

5.15.b	Hourly heat gains for Bedroom 1 with East orientation, Case 2.	58
5.16.a	Monthly internal gains for the whole building, Case 1.	59
5.16.b	Monthly internal gains for the whole building, Case 2.	59
5.17.a	Energy consumption rate for the whole building, Case 1.	60
5.17.b	Energy consumption rate for the whole building, Case 2.	60
5.18.a	CO ₂ emitted due to building energy consumption, Case 1.	61
5.18.b	CO ₂ emitted due to building energy consumption, Case 2.	61
5.19.a	Monthly internal gains for the 3 rd floor, Case 1.	62
5.19.b	Monthly internal gains for the 3 rd floor, Case 2.	62
5.20.a	Monthly internal gains for the living room, Case 1.	63
5.20.b	Monthly internal gains for the living room, Case 2.	63
5.21.a	Monthly internal gains for Bedroom 1, Case 1.	64
5.21.b	Monthly internal gains for Bedroom 1, Case 2.	64
5.22.a	Heat loss of the living room, Case 1.	65
5.22.b	Heat loss of the living room, Case 2.	65
5.23.a	Heat loss of Bedroom 1, Case 1.	66
5.23.b	Heat loss of Bedroom 1, Case 2.	66
5.24.a	Energy consumption rate for the whole building, Case 1.	67
5.24.b	Energy consumption rate for the whole building, Case 2.	67
5.25.a	CO ₂ emitted due to building energy consumption, Case 1.	68
5.25.b	CO ₂ emitted due to building energy consumption, Case 2.	68
5.26	PMV index & PPD index.	69
5.27.a	Temperature contour for maximum flow rate, Case 1.	70
5.27.b	Temperature contour for maximum flow rate, Case 2.	70
5.27.c	Temperature contour for minimum flow rate, Case 1.	71
5.27.d	Temperature contour for minimum flow rate, Case 2.	71
5.28.a	PMV contour for maximum flow rate, Case 1.	72
5.28.b	PMV contour for maximum flow rate, Case 2.	72
5.28.c	PMV contour for minimum flow rate, Case 1.	73

5.28. a	PM v contour for minimum flow rate, Case 2.	/3
5.29.a	PPD contour for maximum flow rate, Case 1.	74
5.29.b	PPD contour for maximum flow rate, Case 2.	74
5.29.c	PPD contour for minimum flow rate, Case 1.	75
5.29.d	PPD contour for minimum flow rate, Case 2.	75
5.30.a	Velocity contour for minimum flow rate.	76
5.30.b	Velocity contour for maximum flow rate.	76
5.31.a	Calculation output data for maximum flow rate, Case 1.	77
5.31.b	Calculation output data for maximum flow rate, Case 2.	77
5.32.a	Calculation output data for minimum flow rate, Case 1.	78
5.32.b	Calculation output data for minimum flow rate, Case 2.	78
6.1.a	Sensible cooling load.	80
6.1.b	Air-conditioners energy consumption rate and energy saved.	80
6.1.c	Cost of energy consumed and money saved.	81
6.1.d	CO ₂ emitted due to energy consumed.	81
6.2.a	Sensible cooling load.	82
6.2.b	Air-conditioners energy consumption rate and energy saved.	82
6.2.c	Cost of energy consumed and money saved.	83
6.2.d	CO ₂ emitted due to energy consumed.	83
6.3.a	Sensible cooling load.	84
6.3.b	Air-conditioners energy consumption rate and energy saved.	84
6.3.c	Cost of energy consumed and money saved.	85
6.3.d	CO ₂ emitted due to energy consumed.	85
6.4.a	Sensible cooling load, Case 1.	86
6.4.b	Sensible cooling load, Case 2.	86
6.5.a	Air-conditioners energy consumption rate, Case 1.	87
6.5.b	Air-conditioners energy consumption rate, Case 2	87
6.6.a	Left-house energy consumption rate, Case 1	88
6.6.b	Left-house energy consumption rate. Case 2	88

6.7.a	Left-house electricity bill, Case 1	89
6.7. b	Left-house electricity bill, Case 2	89
6.8.a	CO ₂ emitted due to energy consumed, Case 1	90
6.8.b	CO ₂ emitted due to energy consumed, Case 2	90
6.9.a	Energy saved in summer.	91
6.9.b	Money saved in summer.	91
6.9.c	CO ₂ emission saved in summer.	92
6.10	Years for money pay-back.	93
6.11.a	Air-conditioners energy consumption rate, Case 1	94
6.11.b	Air-conditioners energy consumption rate, Case 2	94
6.12.a	Cost of energy consumed & money saved, Case 1	95
6.12.b	Cost of energy consumed & money saved, Case 2	95
6.13.a	CO ₂ emitted due to energy consumed, Case 1	96
6.13.b	CO ₂ emitted due to energy consumed, Case 2	96
6.14.a	Sensible heating load.	97
6.14.b	Heat-pumps energy consumption rate and energy saved.	97
6.14.c	Cost of energy consumed and money saved.	98
6.15.a	Sensible heating load.	98
6.15.b	Heat-pumps energy consumption rate and energy saved.	99
6.15.c	Cost of energy consumed and money saved	99
6.16.a	Sensible heating load, Case 1	100
6.16.b	Sensible heating load, Case 2	100
6.17.a	Heat-pumps energy consumption rate, Case 1	101
6.17.b	Heat-pumps energy consumption rate, Case 2	101
6.18.a	Cost of energy consumed, Case 1	102
6.18.b	Cost of energy consumed, Case 2	102
7.1	Louvre window	104
7.2	Overhang window	104

Symbols and Abbreviations

Nomenclature

Symbol

A area, m2

 A_L building effective leakage area (including flue) at 4 Pa, assuming

CD 1, cm2

 C_l air latent heat factor, 3010 W/(L·s) at sea level

 C_s air sensible heat factor, 23 W/(L·s·K) at sea level

 C_t air total heat factor, 1.2 W/(L·s) (kJ/kg) at sea level

CF cooling load factor, W/m²

 D_{oh} depth of overhang (from plane of fenestration), m

DR daily range of outdoor dry-bulb temperature, K

E peak irradiance for exposure, W/m^2

 F_{shd} shaded fraction

FF coefficient for CF_{fen}

G internal gain coefficient

 Δh indoor/outdoor enthalpy difference, kJ/kg

H height, m

HF heating (load) factor, W/m²

I infiltration coefficient

IAC interior shading attenuation coefficient

IDF infiltration driving force, $L/(s \cdot cm^2)$

k conductivity, W/(m·K)

LF load factor, W/m²

OF coefficient for CF_{opq}

p perimeter or exposed edge of floor, m

PXI peak exterior irradiance, including shading modifications

q heating or cooling load, W

Q air volumetric flow rate, L/s

R insulation thermal resistance, $(m^2 \cdot K)/W$

SHGC fenestration rated or estimated NFRC solar heat gain coefficient

SLF shade line factor

t temperature, °C

T_x solar transmission of exterior attachment

Δt design dry-bulb temperature difference (cooling or heating), K

U construction U-factor, W/(m2 · K) (for fenestration, NFRC rated heating U-

factor)

w width, m

 ΔW indoor-outdoor humidity ratio difference, kg_w / kg_{da}

V building volume, m³

 X_{oh} vertical distance from top of fenestration to overhang, m

z depth below grade, m

 α_{roof} roof solar absorptance

db Dry-bulb temperature

rh Relative humidity

List of Abbreviations

American Society of Heating, Refrigerating and Air-Conditioning

ASHRAE Engineers

C.O.P Coefficient of Performance

KWh Kilowatt hour

BP British Petroleum

OTTV Overall Thermal Transfer Value

WWR Window-to-wall ratio

CFD Computational Fluid Dynamics

PMV Predicted Mean Vote

PPD Percentage Predicted Dissatisfied

SBEM Simplified Building Energy Model

ECMs Energy Conservation Measures

GW Glass Wool

LEED Leadership in Energy and Environmental Design

OECD Organization for Economic, Co-operation & Development

NFRC National Fenestration Rating Council

CSA Canadian Standards Association

ceil Ceiling

cf conditioned floor

cl Closed

es exposed surface

exh Exhaust

fen Fenestration
i Infiltration

in Indoor

ig internal gain

LatentOutdoorOcOccupantOhOverhangOpaqueShdShaded