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Abstract

Building a robust Text-Independent Speaker Identification (SID) system that can work effectively

in different environments is a very challenging task. It is well known that the performance of

Text-Independent SID systems deteriorates significantly with the presence of noise and spectral

distortion in the training and testing utterances.

In this thesis, two approaches for improving the performance of standard Gaussian Mixture

Model (GMM)-based speaker identification systems are introduced. For these approaches, the

initial model is a GMM trained by the standard Maximum Likelihood Estimation (MLE) method.

In the first approach, the robustness of the GMM classifier to outliers is increased by deploying

techniques proposed in the literature of robust statistics. We consider prominent estimators that

belong to the family of Minimum Volume Ellipsoids (MVEs), where these ellipsoids are called

the Löwner-John MVE, the Rousseeuw MVE, and the Minimum Covariance Determinant (MCD).

Compared to the traditional method, the introduced methods are less sensitive to outliers (in the

feature-vector space), caused by additive noise and spectral distortion. At the same time, they

can be efficiently implemented using modern day computers. Moreover, in the testing phase,

we use a very simple distance metric for comparing the unknown testing utterance against the

speakers’ models. The proposed methods have been applied to the NIST 2000 speaker recognition

evaluation and compared against state-of-the-art techniques such as the supervectors method and

the i-vectors methods. Experimental results show that the proposed method provides up to 16%

relative improvement in the identification performance over the i-vector methods and up to 40%

reduction in testing time when compared to the MLE method.

In the second proposal, the main aim is to increase the discriminative ability of the GMM

classifier by using a modified version of the Large-Margin discriminative criterion to estimate

its parameters. Generally, discriminative techniques such as Large Margin Estimation (LME)

outperform standard generative techniques at the expense of additional training complexity [98,

47, 59]. In this thesis, we introduce some modifications to the standard LME criterion to decrease

its complexity without much sacrifice in the classification performance. Simulation results reveal

that our proposed LME outperforms the MLE and the Minimum Classification Error (MCE)

criterion by 11.07% and 8.76%, respectively. Moreover, the LME criterion is faster than MCE

criterion where the amount of relative reduction in the calculation time for the gradient and cost

functions are estimated to be 82.92% and 37.75%, respectively.
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Chapter 1: Introduction
Speech signal is one of the most rich signals in information; it carries the following
types of information: linguistic information (spoken words and the language), speaker
information (e.g., identity, emotional state, accent) and environmental information (e.g.,
the signal to noise ratio and the transmission bandwidth). Unlike some other biometrics,
it does not require special sensors for acquisition; all what it needs for measurements
is a microphone. Therefore, human voice has long been considered as an important
characteristic to be used for authentication. The process of recognizing people by their
voices is generally referred to as speaker recognition. Nowadays, speaker recognition has
various potential applications such as user authentication in call centres and E-commerce
systems, recognizing persons in a conversation for forensics, and security check in military
environments.

Recently, research in speaker recognition has gained much momentum thanks to the
widespread of low-cost and powerful computing devices. There are two main tasks of
speaker recognition: speaker identification (SID) and speaker verification. In speaker
identification, it is required to search among a set of individuals for the speaker of a given
utterance. The set of individuals are commonly described as registered or enrolled speakers
in the system. On the other hand, speaker verification is concerned with authenticating the
claimed identity of a person using his voice. An SID system is said to be open-set if it
can decide whether speaker of the unknown utterance is already enrolled in the system
or not; otherwise, it is called a closed-set SID system. On another front, an SID system
is said to be text-independent if it does not depend on the spoken text. On the other
hand, text-dependent SID systems requires modelling the linguistic content of the given
utterances. In this thesis, we will focus on the text-independent closed-set SID problem.
A brief review on SID Systems will be given in chapter 3.

In fact, it is still infeasible to implement practical SID systems that can be deployed in
real-life applications [62]. Unlike speaker verification, the performance of SID systems
deteriorates significantly when the number of enrolled speakers increases. Several factors
attribute to this degradation in performance including the noisy recording conditions
(additive and convolutional noise), the spectral distortion caused by the communication
channel, and the mismatch between training and testing recording conditions.

Our main objective, in this thesis, is to compensate these effects so as to improve the
performance of existing SID systems. According to the literature, the compensation can
be performed in three domains:

Feature domain
In this approach, signal processing techniques are applied to estimate and remove the

2



noise spectral components from the raw speech signal and/or the extracted speech
features [117, 94, 137, 13, 64].

Classifier domain
In this approach, the estimation procedure of the classifier parameters is modified to
account for the presence of noise and spectral distortion in the speech signal. This
is achieved by either explicitly modelling the effects of noise and spectral distortion
or by employing robust estimation criteria [125, 113, 32, 126, 48].

Score domain
In this approach, the scores of the candidate models are normalized to account for
the different recording environments of the training and testing utterances.

Our proposed techniques belong to the category of classifier-domain compensation.

1.1 Thesis Contributions

In this thesis, we propose two techniques for building a robust SID system in noisy
environment and under mismatch between training and testing conditions. In both methods,
we use the Gaussian Mixture Model (GMM) as the main statistical classifier [90].

In the first technique, we estimate the GMM parameters based on two robust criteria
[42]: the Minimum Volume Ellipsoids (MVE) [118, 109, 121] and the Minimum Covari-
ance Determinants (MCD) [41, 33]. It is sought that those criteria are more insensitive to
outliers than the standard Maximum Likelihood (ML) criterion leading to a significant
improvement in the classification performance of the overall SID system. Experimental
results show an increase in the classification accuracy that reach 6.16% compared to the
regular ML approach for the full covariance case. Moreover, results show that our testing
criterion is simpler and faster than the classical log-likelihood criterion used in the regular
ML approach for both cases of full and diagonal covariance matrices. Furthermore, our
approach outperforms the state-of-the-art i-vector method for short testing utterance and
the amount of relative improvement reaches 16% in some cases.

In the second approach, we propose a novel discriminative criterion for GMM training.
Our proposed criterion is a modification to the popular Large Margin Estimation (LME)
criterion [59, 103], successfully employed in other speech recognition applications [47,
131, 134]. In particular, we approximate the LME criterion to speed up the training and
testing processes without much sacrifice in the classification performance. Simulation
results reveal that our proposed technique outperforms other discriminative criteria such as
the Minimum Classification Error (MCE) [51] and the Generalized Minimum Error Rate
(GMER) [65]. The MCE criterion tends to minimize an empirical loss criterion which is

3


