EXPERIMENTAL STUDY OF THE POTENTIAL ANTI-INFLAMMATORY ROLE OF REBAMIPIDE IN SOME EXPERIMENTAL ANIMAL MODELS

thesis

Submitted in Partial Fulfillment of the Master Degree in Pharmacology

BY

Amira karam Mahmoud

(M.B, B.Ch)

Demonstrator of medical pharmacology Faculty of medicine, Cairo University

Supervisors

Dr. Ebtissam Abdul ghaffar Metwally

Professor of medical pharmacology Faculty of Medicine, Cairo University

Dr. Ahmed Abdul rahman Ahmed

Lecturer of medical pharmacology Faculty of Medicine, Cairo University

Dr. Samar Abdel Monem El-Sheikh

Assisstant professor of pathology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2015

Dedication

To my parents and my husband who gave me continous guidance and support

Acknowledgement

Before all I would like to express my deep thanks to Allah without his great blessings, I would never accomplish this work.

I wish to express my deepest appreciation to Prof. **Ebtissam Abdul Ghaffar Metwally**, Professor of medical Pharmacology, Faculty of Medicine, Cairo University, for her continuous guidance and constructive advice throughout the work. Without her generous help this work would not have been accomplished in its present picture.

I am greatly indebted to **Dr. Ahmed Abdul rahman Ahmed** Lecturer of medical pharmacology Faculty of Medicine,
Cairo University, for his kind supervision and sincere
encouragement.

I would like to express my sincerest gratitude to Ass. Prof. Samar Abdul Monem El-Sheikh Ass. Professor of Pathology, Faculty of Medicine, Cairo University, for her sincere effort, valuable remarks, unlimited support and keen supervision.

My deep appreciation to all the staff of pharmacology department, Cairo University, who had been very helpful and supportive to me.

Amira karam

<u>Abstract</u>

Background: Inflammation contributes to the pathophysiology of many chronic diseases. Chronic inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. TNFα plays a pivotal role in pathogenesis of them. Although Corticosteroids, Immunosuppressive agents, and Biological agents such as TNFα inhibitors, they alleviate the symptoms but do not cure the disease and have some limitations owing to their severe side effects. Consequently, looking for new agents that are equally or more effective and cause fewer side effects are needed. One of these drugs is rebamipide. Recent pharmacological studies have demonstrated that rebamipide has many pleiotropic pharmacological effects Anti-Inflammatory, free radical including scavenging and immunomodulatory are the most important effects.

Aim of the work: we intended to illucidate, compare and evaluate possible anti-inflammatory and immunomodulatory role of rebamipide in some experimental animal models of colitis, asthma and arthritis

Methods and experimental designs

Acetic acid 4% induced ulcerative colitis, OVA sensitized guinea pig model of bronchial asthma and acute non immunological formaldehyde1% induced arthritis

Results and Conclusion

In the present study we verified the well established protective therapeutic effect of rebamipide in amelioration of AA induced ulcerative colitis in rats, which could be explained by its potent anti-inflammatory , antioxidant and cytoprotective effects .The significant attenuation of pathological changes associating the OVA sensitized guinea pig model of bronchial asthma could be attributed anti-inflammtory and immunomodulatory role .

Its insignificant role in ameliorating pathlogical changes associating formaldehyde induced arthritis could explain that its immunomodulator role is more obvious in ulcerative colitis and asthma models in which cell medited immunity was illicited or the choosen dose of the rebamipide in this study could not illicit anti-inflammatory and immunomodulatory

Key words

Inflammation, ulcerative colitis, Asthma, Arthritis, Rebamipide, Dexamethazone, TNFa, MPO, IgE, Acetic acid, Ovaalbumin, Formaldhyde

List of the contents

	Page
List of Abbreviations	vii-viii
List of Tables	хi
List of Figures	x-xiii
Introduction	1-3
Aim of the Work	4
Review of Literature	5-47
Chapter (1):	5-23
Inflammation	
Chapter (2):	
ulcerative colitis	24-31
bronchial asthma	31-37
• arthritis	38-45
Chapter (3):	
Rebamipide	49-53
Materials and Methods	54-74
Results	75-123
Discussion	124-149
Summary and conclusion	150-154
Recommendation	155
References	156-187
Arabic Summary	1-5

List of abbreviations

5-ASA	5-amino salycilic acid
5HT	Sertonin
AA	Acetic acid
ADAMT	Adesintegrin and metalloprotease with
	thrombospondintype 1 motif
AHR	Airway hyperresponsiveness
ANOVA	Analysis of variance
APC	Antigen presenting cell
AZA	Azathioprine
$\mathbf{C_0}$	Degree centigrade
CAM	Cellular adhesion molecule
CARD	Caspase recruitment domain
CD	Cluster of differentiation
COX	Cyclooxygease enzyme
CTL	Cytotoxic Tlymphocytes
CW/BW	Colonic weight to body weight ratio
CXCR	Chemokine receptor
DAI	Disease activity index
DEX	Dexamethazone
DMARD	Disease modifying anti rheumatic drugs
DSS	Dextran sulphate sodium
ERK	Extracellular signal regulated kinase
EPR	electron paramagnetic resonance
FADD	Fas –associated death domain
GINA	Global initiative for asthma
GM-CSF	Granulocyte macrophage colony stimulating factor
H& E	Haematoxyllin and Eosin staining
HCQ	Hydroxychloroquine
HIFα	Hypoxia inducible factorα
HO-1	Hemoxygenase -1
IBD	Inflammatory bowel disease
ICS	Inhaled corticosteroids
IFN 	Interferron
IgE -	Immunoglobulin E
Ik_B	Inhibitor of NF-kB
IKK	Inhibitor for kappa _B kinase

TT	T.4. J. 12.
IL	Interlukin
JAM	Juxta adhesion molecules
JUK	C-jun-N-terminal kinase
LABA	Long acting beta2 agonist
LEF	Leflunomide
LOX	Lipooxygenase enzyme
LT	Leukotrien
MADCAM	Mucosal addressin cellular adhesion molecule
MAPK	Mitogen activated protein kinase
MCP	Monocyte chemoattractant protein
M-CSf	Macrophage colony stimulating factor
MEKK1	MAP/ERK kinase kinase1
MHC	Major histocomptibility
MKK7	MAP kinase kinase7
MPO	Myeloperoxidase enzyme
mM	Milli mole
MTX	Methotrexate
NF-K _B	Nuclear factor kappa
NK	Natural killer cell
NSAID	Nonsteroidal inflammatory drugs
OVA	Ovaalbumin
PAF	Platlet activating factor
PG	Prostaglandin
PKC	Protein kinase c
PLA2	Phospholipase A2
PMNs	Polymorphnuclear cell
PPAR	peroxisome proliferator-activated receptor
PSGL	P selectin glycoprotein ligand
RANKL	Receptor activator of nuclear factor kappa
Reb	Rebamipide
RIP	Receptor interacting protein
SABA	Short acting beta agonist
SOD	Superoxide dismutase
SPZ	Sulphazalasine
TAK1	TGF-B transforming growth factor beta activated
	kinase
Th	T helper
TIMP	Tissue inhibitors of metalloprotienases
TNBS	Trinitrobenzene sulphonic acid
TNF	Tumer necrosis factor
TRADD	TNF receptor associated death domain
TRAF ₂	TNF activated factor 2

Thromboxane

Lists of tables

Tables		Page
1	Pharmacokinitics of rebamipide	51
2	Scoring of disease activity index	59
3	The effect of rebamipide and dexamethazone on DAI and CW/BW in acetic acid 4%induced ulcerative colitis in albino rats	76
4	The effect of rebaipide and dexamethazone on serum TNFα and colonic MPO in acetic acid 4%induced ulcerative colitis in albino rats	79
5	The effect of rebaipide and dexamethazone on macroscopic and microscopic scoring in acetic acid 4% induced ulcerative colitis in albino rats	83
6	The effect of rebamipide and dexamethazone on gupta score and mortality rate in OVA sensitized guinea pig model of bronchial asthma	88
7	The effect of rebamipide and dexamethazone on contractile response of isolated tracheal rings in gm in OVA sensitized guinea pig model of bronchial asthma	92
8	The effect of rebamipide and dexamethazone on serum TNFα, IgE and blood eosinophilic percentage in OVA sensitized guinea pig model of bronchial asthma	100
9	The effect of rebamipide and dexamethazone on histopathological score in OVA sensitized guinea pig model of bronchial asthma	103
10	The effect of rebamipide and dexamethazone on the mean paw edema in ml in acute non immunological formaldehyde 1% induced arthritis in albino rats formaldhydinduced	109
11	Mean percentage change of paw edema produced by rebamipide and dexamethazone(in contrast to group2C) on acute non immunological formaldehyde 1% induced arthritis in albino rats at day 5 and 15	110
12	The effect of rebamipide and dexamethazone on arthritic score in acute non immunological formaldehyde1% induced arthritis in albino rats	114

13	The effect of rebamipide and dexamethazone on serum TNFα in ng/ml in acute non immunological formaldehyde 1% induced arthritis in albino rats rats	116
14	Mean percentage change of serum TNFα produced by rebamipide and dexamethazone in acute non immunological formaldhyde 1%induced arthritis at day 15	118

List of figures

figure		page
1	The leukocyte recruitment cascade	8
2	cellular component of inflammation	15
3	Arachidonic acid metabolites	17
4	Cell signaling pathways activated by TNFα	21
5	Interaction of various factors contributing to chronic intestinal inflammation in a genetically susceptible host	25
6	pathophysiology of ulcerative colitis	27
7	Therapeutic pyramid approach to inflammatory bowel diseases	28
8	Pathogenesis of asthma	34
9	GINA stepwise approach to control symptoms and minimize future risk	35
10	Role of proinflammatory cytokines in the pathophysiology of osteoarthritis	39
11	Algorism for osteoarthritis pain therapy	40
12	Pathogenesis of rheumatoid arthritis	43
13	American college of rheumatology recommendations update for management of rheumatoid arthritis	44
14	Photo in ulcerated group2A showing bloody diahrrea	76
15	The effect of rebaipide and dexamethazone on DAI in acetic acid 4% induced ulcerative colitis in albino rats(bar graph)	77
16	The effect of rebaipide and dexamethazone on CW/BW in acetic acid 4% induced ulcerative colitis in albino rats(bar graph)	77
17	The effect of rebaipide and dexamethazone on serum $TNF\alpha$ in acetic acid 4% induced ulcerative colitis in albino rats(bar graph)	80

18	The effect of rebaipide and dexamethazone on colonicMPO in acetic acid 4% induced ulcerative colitis in albino rats(bar graph)	80
19	Significant gross morphological changes in ulcerated positive control group2A	81
20	The effect of rebaipide and dexamethazone on macroscopic and microscopic scoring in acetic acid 4% induced ulcerative colitis in albino rats(bar graph)	83
21	Photomicrograph of normal control group1A in AA induced ulcerative colitis in albino rats	84
22	Photomicrograph of ulcerated positive control group2A in AA induced ulcerative colitis	84
23	Photomicrograph of ulcerated rebamipide treated group3A in AA induced ulcerative colitis	85
24	Photomicrograph of ulcerated dexamethazone treated group group4A in AA induced ulcerative colitis	85
25	The effect of rebamipide and dexamethazone on gupta score in OVA sensitized guinea pig model of bronchial asthma(bar graph)	89
26	The effect of rebamipide and dexamethazone on mortality rate in OVA sensitized guinea pig model of bronchial asthma(bar graph)	89
27	The effect of rebamipide and dexamethazone on the mean contractile response of the isolated tracheal ring in response to different doses of histamine(10 ⁻⁵) in OVA sensitized guinea pig model of broncheal asthma(line graph)	93
28	The effect of rebamipide and dexamethazone on the mean contractile response of the isolated tracheal ring in response to different doses of histamine(10 ⁻⁵) in OVA sensitized guinea pig model of broncheal asthma (bar graph)	93
29	Trace(1) in normal non sensitized OVA group1B represents mean contractile response of isolated guinea pig tracheal ring in gm in response to histamine(10 ⁻⁵) at doses:200ng,400ng,800ng,1.6μg	94
30	Trace (2) in sensitized OVA group 2B represents mean contractile response of isolated guinea pig tracheal ring in gm in response to histamine(10 ⁵) at doses: 200ng, 400ng, 800ng, 1.6μg	95

31	Trace (3)sensitized OVA rebamipide treated group 3B represents mean contractile response of isolated tracheal ring in gm in response to histamine(10 ⁻⁵) at doses: 200ng, 400ng, 800ng, 1.6μg	96
32	Trace (4) sensitized OVA dexamethazone treated group4B represents mean contractile response of isolated guinea pig tracheal ring in gm in response to histamine(10 ⁻⁵) at doses: 200ng, 400ng, 800ng,1.6μg	97
33	The effect of rebamipide and dexamethazone on mean serum TNFα in OVA sensitized guinea pig model of bronchial asthma(bar graph)	100
34	The effect of rebamipide and dexamethazone on mean serum IgE in OVA sensitized guinea pig model of bronchial asthma(bar graph)	101
35	The effect of rebamipide and dexamethazone on mean serum eosinophilic percentage in OVA sensitized guinea pig model of bronchial asthma (bar graph)	101
36	The effect of rebamipide and dexamethazone on histopathological score in OVA sensitized guinea pig model of bronchial asthma (bar graph)	103
37	photomicrograph of the lung (stained with haematoxylin and eosinx200)	104
38	photomicrograph of Lung (x200)OVA sensitized non treated group 2B	104
39	photomicrograph of Lung (x100) masson trichrome showing evidence of fibrosis(appear blue) in OVA sensitized non treated group2B	105
40	photomicrograph of lung (x200) positive tuluidine blue for mast cells(red arrow) in OVA sensitized non treated group2B	105
41	Photomicrograph of Lung stained with H and E (x200) ribamipde treated group3B	106
42	Photomicrograph of Lung stained with H and E (x200) in dexamethazone treated group 4B	106
44	Photo showing Effect of Formaldehyde 1% injection on hind paw of rat	110

45	The Effect of rebamipide and dexamethazone on the mean paw edema in ml in acute non immunological formaldehyde 1% induced arthritis in rats (line graph)	111
46	The Effect of rebamipide and dexamethazone on the mean paw edema in ml in acute non immunological formaldehyde 1% induced arthritis in rats(bar graph)	111
47	Percentage change of paw volume produced by rebamipide and dexamethazone in acute non immunological formaldehyde induced arthritis in rats at day 5 (bar graph)	112
48	Percentage change of paw volume produced by rebamipide and dexamethazone in acute non immunological formaldehyde 1% induced arthritis in rats at day 15 (bar graph)	112
49	The effect of rebamipide and dexamethazone on arthritic score in acute non immunological formaldehyde 1% induced arthritis in rats (bar graph)	114
50	The effect of rebamipide and dexamethazone on the mean Serum TNFα level in ng/ml in acute non immunological formaldehyde 1% induced arthritis in rats (line graph)	117
51	The effect of rebamipide and dexamethazone on the mean Serum TNFα level in ng/ml in acute non immunological formaldehyde 1% induced arthritis in rats (bar graph)	117
52	The effect of rebamipide and dexamethazone on mean percentage change of Serum TNF α level in acute non immunological formaldehyde 1% induced arthritis in rats at day15 (bar graph)	118
53	The mean percentage changes of serum TNFα a moung different groups in AA induced ulcerative colitis in rats, OVA sensitized guinea pig model of bronchial asthma and acute non immunological formaldehyde induced arthritis in rats (bar graph)	119
54	The mean percentage changes of serum TNF amoung different groups in AA induced ulcerative colitis in rats, OVA sensitized guinea pig model of bronchial asthma and acute non immunological formaldehyde induced arthritis in rats (bar graph)	119
55	Photomicrograph in rat hind paw of group1C in acute non immunological formaldehyde induced arthritis	121

56	Photomicrograph in rat hind paw of group2C in acute non	121
	immunological formaldehyde induced arthritis	
57	Photomicrograph in rat hind paw of group3C in acute non	122
	immunological formaldehyde induced arthritis	
58	Photomicrograph in rat hind paw of group4C in acute non	122
	immunological formaldehyde induced arthritis	

INTRODUCTION

Inflammation is considered the cornerstone of pathology in that the changes observed are indicative of injury and disease. it is recognised that inflammation is far more complex than might first appear and is a major response of the immune system to tissue damage and infection, These processes involve the major cells of the immune system, including neutrophils, basophils, mast cells, T-cells, B-cells, etc. These events are controlled by a host of extracellular mediators and regulators, including cytokines, growth factors, eicosanoids (prostaglandins, leukotrines, etc), complement and peptides. Inflammation is now considered as the full circle of events, from initiation of a response, through the development of the cardinal signs of inflammation to healing and restoration of normal appearance and function of the tissue or organ. However, in certain conditions there appears to be no resolution and a chronic state of inflammation develops that may last the life of the individual. Such conditions include the inflammatory disorders rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, retinitis, multiple sclerosis, psoriasis and atherosclerosis. (Neville et al., 2004).

It was postulated that any discussion of inflammation must involve consideration of the molecular level, and should also include the full range of cell types involved in the acute and chronic injury response. Thus, the positive or negative outcome of the process is influenced by the simultaneous responses and interactions of these cell types (Scott et al., 2004).

The concept that some cytokines function primarily to induce inflammation is based on the genes coding for the synthesis of small