

Common Medical Errors in the Intensive Care Units

Essay

Submitted for Partial Fulfillment of the Master Degree in Intensive Care Medicine

By Hatem Mahmoud Sayed

(M.B.B.Ch) Ain shams university

Supervised By

Prof. Ahmed Nagah El Shaer

Professor of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain shams university

Dr. Assem Adel Moharram

Lecturer of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain shams university

Dr. Amr Sobhy Abd Elkawy

Lecturer of Anesthesia, Intensive Care and pain management Faculty of Medicine - Ain shams university

> Faculty of Medicine Ain Shams University 2017

Abstract

Introduction: The modern intensive care unit (ICU) is the highest mortality unit in any hospital. The ICU is also one of the sites in which medical errors are most likely to occur because of the complexity of care. Since the patient population is severely ill and undergoes multiple complex interventions at the same time, these patients are extremely vulnerable to experiencing adverse outcomes.

Aim of the Work: The objective of the following essay is to highlight the common medical errors in intensive care units, as well as how to avoid these errors.

Summary: Safety is a global concept that encompasses efficiency, security of care, reactivity of caregivers, and satisfaction of patients and relatives. Patient safety has emerged as a major target for healthcare improvement. Quality assurance is a complex task, and patients in the intensive care unit (ICU) are more likely than other hospitalized patients to experience medical errors, due to the complexity of their conditions, need for urgent interventions, and considerable workload fluctuation.

Keywords: Medical Errors, Intensive Care Units

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Ahmed Nagah El Shaer** Professor of Anesthesia, Intensive Care and pain management, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Assem Adel Moharram** Lecturer of Anesthesia, Intensive Care and pain management, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Amr Sobhy Abd Elkawy**, Lecturer of Anesthesia, Intensive Care and pain management Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate his patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support pushing me forward, this work would not have ever been completed.

Hatem Mahmoud Sayed

Contents

List of Abbreviations
List of Tables
List of Figures
Introduction and Aim of work
Epidemiology of common errors in ICU
Overview and definitions
Medical Error Classification Systems
Incidence, risk factors
Medication errors in ICU
Incidence
Risk factors for medication errors in ICU
Drugs Associated With Medication Errors
Drug-Induced acute kidney injury in the ICU
Drug-induced liver injury in the ICU
Drug-induced thrombocytopenia in the ICU
Drug-induced Endocrine disorders In the ICU
Electrolyte disturbances associated with medications in the ICU
Problems of administering drugs via nasogastric tubes and how to avoid
How to avoid medication errors and Bar coding
Procedure errors in ICU
Errors in Systemic arterial lines and how to avoid
Errors in Central venous lines and how to avoid
Errors in Pulmonary arterial catheters and how to avoid
Errors in Endotracheal Intubation and how to avoid
Errors in Tracheostomy and how to avoid
Errors in Chest tube insertion and how to avoid
Errors in Bronchoscopy and how to avoid
Errors in nasogastric tube insertion and how to avoid
Errors in indwelling urinary catheters and how to avoid
Lab testing and iatrogenic anemia in ICU
Nosocomial infections in ICU and how to avoid
Equipment failure in ICU
Mechanical ventilator associated errors
Equipment related incidents and how to avoid
Safe patient care and prevention of other errors (PrU,falls,VTE,stress ulcers)
Summary
References
Arabic Summary

List of Abbreviations

ACEI	Angiotensin converting enzyme inhibitor
ADEs	Adverse drug events
ADRs	Adverse drug reactions
AEs	Adverse events
AKI	Acute kidney injury
ALI	Acute Lung Injuy
ARBs	Angiotensin receptor blockers
ARDS	Acute respiratory distress syndrome
ATN	Acute tubular necrosis
AV	Arteriovenous
BSI	Blood Stream Infection
CASS	Continous Aspiration of Subglottic
	Secretions
CDC	Centre of Disease Control
CMV	Continous Mechanical ventilation
СРОЕ	Computarized physician order entry
CR-BSI	Catheter Related Blood Stream Infection
CT	Computerized topography
CVC	Central venous catheter
CVCI	Cann't Ventilate Cann't Intubate
DIT	Drug induced thrombocytopenia
DVT	Deep Venous Thrombosis
ED	Emergency department

List of Abbreviations (Cont.)

EGNB	Enteric Gram Negative Bacilli
EPC	Error Producing Conditions
EPUAP	European Pressure Ulcer Advisory Panel
ESBL	Extended Spectrum Betalactamase
ETI	Endotracheal intubation
ETT	Endotracheal tube
FFB	Flexible Fiberoptic Bronchoscopy
FV	Femoral vein
GI	Gastro Intestinal
HIT	Heparin induced thrombocytopenia
HIV	Human Immunodefficiency Virus
ICP	Intracranial pressure
ICU	Intensive care unit
IJV	Internal jugular vein
IOM	Institute Of Medicine
IPC	Intermittent Pneumatic Compression
ITT	Intensive insulin therapy
IV	Intravenous
IVIG	Intra venous immunoglobulin
LDUH	Low Dose Unfractinated Heparin
LMWH	Low Molecular Weight Heparin
MCT	Medium Chain Triglycerides
MDR	Multidrug resistant

List of Abbreviations (Cont.)

MRSA	Methicillin Resistant Staphylococcus Aureus
MV	Mechanical ventilation
NNIS	National Nosocomial Infections Surveillance
PA	Pulmonary artery
PAC	Pulmonary artery catheter
PE	Pulmonary Embolism
PEEP	Positive end expiratory pressure
PN	Parentral nutrition
PrU	Preesure ulcer
REPE	Reexpansion Pulmonary Edema
RV	Right ventricle
SC	subcautenous
SCV	Subclavian vein
SEE	Sentinel Event Evaluation
SSI	Surgical Site Infection
SUP	Stress Ulcer Prophylaxis
TBLB	TracheoBroncheal Lung Biopsy
TCY	thrombocytopenia
TEF	Tracheoesophegeal fistula
THR	Total Hip Replacement
TI	Tracheal intubation
TKR	Total Knee Replacement
TPN	Total parenteral nutrition

List of Abbreviations (Cont.)

TR	Tracheostomy
TT	Tracheostomy Tube
UTI	Urinary Tract Infection
VALI	Ventilator-associated lung injury
VAP	Ventilator associated pneumonia
VIDD	Ventilator Induced Diaphragmatic
	Dysfunction
VILI	Ventilator-induced lung injury
VRE	Vancomycin Resistant Enterococci
VTE	Venous ThromboEmbolism

List of tables

Table No.	Title	Page
Table 1	Definition of medical errors	4
Table 2	Classification Schema and Examples for Medical	5
	Errors in the Intensive Care Unit	
Table 3	Examples of prescription errors	13
Table 4	Examples of administration errors	14
Table 5	Risk factors for medication errors in the intensive	16
	care unit	
Table 6	Common drugs associated with nephrotoxicity in ICU	19
Table 7	Medications frequently prescribed in the ICU potentially may cause liver injury	23
Table 8	4Ts scoring system for heparin-induced thrombocytopenia	27
Table9	Medication induced causes of sodium disturbances	31
Table10	Medication induced causes of potassium disturbances	33
Table 11	Effect of crushing tablets- important examples	39
Table 12	Sample strategies to prevent medication errors	41
Table 13	Central line Site-Related Infections	54
Table 14	Current Indications for Use of the Swan-Ganz Catheter	57
Table15	Complications of Endotracheal intubation	63
Table16	Complications of tracheostomy	71
Table 17	Complications of chest tube	84
Table 18	Complications associated with bronchoscopy	87
Table 19	Recommendations for Bronchoscopy in	90
	mechanically ventilated patients	
Table 20	Factors that predispose to nosocomial infection	103
Table 21	Devices classified according to criticality and frequency of use	129
Table 22	Pressure Ulcer Classification System	139

List of Figures

Fig.	Title	Page
1	Classification of medication errors based	7
	on a psychological approach	
2	Bar coading	44
3	Dry gangrene with clear demarcation of	46
	thumb,index and middle finger	
	complicating radial artery cannulation	
4	Chest Xray showing lt pneumothorax	50
	following insertion of lt subclavian	
	CVC	
5	Insertion of internal jugular CVC	55
	(anterior approach)	
6	Chest Xray showing looping of	59
	pulmonary artery tubing	
7	obstruction of Endotracheal tube	67
8	Ct scan of the chest showing tracheal	73
	stenosis following tracheostomy	
9	Chest Xray showing chest tube insertion	74
	in case of Rt hemoethorax	
10	Chest Xray shows moderate right	78
	pleural effusion. The intercostal drainage	
	tube was not functioning	
11	Bleeding airway after biopsy taken by	88
	bronchoscopy	
12	Chest Xray shows a Nasogastric tube	92
	forming a loop in the left bronchus	
13	Chest Xray showing Ventilator	105
	associated pneumonia	
14	Sources of Ventilator-associated	106
	Pneumonia	
15	Surgical hand washing	115

List of Figures (Cont.)

8-1-11 (-1-11)		
Fig.	Title	Page
16	Ventilator-induced lung injury	120
	progresses from the primary mechanical	
	injury to secondary atelectrauma	
17	Auto-PEEP	122
18	Infusion pumps	130
19	Monitors in ICU	131
20	Ventilator alarm	134
21	Hospital bed mattress	140
22	ICU bed with high sides	143

Introduction

The modern intensive care unit (ICU) is the highest mortality unit in any hospital. The ICU is also one of the sites in which medical errors are most likely to occur because of the complexity of care. Since the patient population is severely ill and undergoes multiple complex interventions at the same time, these patients are extremely vulnerable to experiencing adverse outcomes (*Halpern and Pastores*, 2010).

Sentinel events related to medication, indwelling lines, airway, and equipment failure in ICUs occur with considerable frequency. Although patient safety is recognized as a serious issue in many ICUs, there is an urgent need for development and implementation of strategies for prevention and early detection of errors (*Valentin et al.*, 2006).

As errors have become more visible and our patients continue to suffer preventable harm, patients, regulators, accreditators, and caregivers have grown frustrated. While there is broad consensus that faulty systems rather than faulty people cause most errors, healthcare workers struggle to find practical and sound ways to address and mitigate hazards (*Marcucci et al.*, 2007).

Aim of the Work

The objective of the following essay is to highlight the common medical errors in intensive care units, as well as how to avoid these errors.

Overview and Definitions

The modern intensive care unit (ICU) is the highest mortality unit in any hospital. There are approximately 4 million ICU admissions per year in the United States with average mortality rate reported ranging from 8-19%, or about 500,000 deaths annually. The ICU is also one of the sites in which medical errors are most likely to occur because of the complexity of care. Since the patient population is severely ill and undergoes multiple complex interventions at the same time, these patients are extremely vulnerable to experiencing adverse outcomes (*Pronovost et al.*, 2002).

In addition to its impact on mortality, critical care is a costly component of the national health care budget, with costs estimated to be \$81.7 billion by 2005, accounting for 13.7% of hospital costs, 4.1% of national health expenditures, and 0.66% of the gross domestic product. (*Halpern et al.*, 2010)

There is a clear need for ICU physicians to improve their willingness and their ability to disclose errors of care in the ICU and to develop effective guidelines for managing these situations in the best interest of all parties Clarifying the causes of a disappointing outcome, acknowledging individual and system failures, and appreciating the impact on the patient are all difficult and humbling obligations. (*Boyle et al.*, 2006).

The term "error" has been previously defined. The Oxford dictionary of current English (1998) defines it as "mistake" or the condition of being morally "wrong". Error has also been defined in a wider context as "The failure in a planned action to be completed as intended or the use of a wrong plan to achieve an aim". Institute of medicine (IOM)