

CORNEAL BIOMECHANICS

Essay
Submitted for partial fulfillment of Master Degree in
Ophthalmology

By **Yousra Shawky Abd El-Rahman**

M.B.,B.Ch. Benha Faculty of Medicine

Supervised by

Prof. Dr. / Mamdouh Hamdy EL-Kafrawy

Professor of Ophthalmology Dean of Faculty of Medicine Ain Shams University

Ass. Prof. Dr. / Tamer Mohamed EL-Raggal

Assistant professor of Ophthalmology Faculty of medicine-Ain Shams University

Faculty of Medicine Ain-Shams University Cairo 2012

Acknowledgment

I would like to express my deepest gratitude and respect to Prof. Dr. Mamdouh Hamdy EL-Kafrawy professor of ophthalmology Ain Shams University, for giving me the privilege to work under his supervision, for his generous guidance throughout this work. His kind supervision, continuous encouragement and endless support will always be engraved within my memory.

It was my great honor work under kind supervision of **Dr. Tamer Mohamed EL-Raggal** Assistant professor of Ophthalmology Ain Shams University. I will remain indebted to him for his assistance, sincere advice, constructive criticism and supervision to ensure accuracy of this work. Without his help this work would have never been completed.

I would like to extend my gratitude to all my colleagues for their support and helpful attitude.

Yousra Shawky Abd El-Rahman

الميكانيكية الحيوية للقرنية

رسالة توطئة للحصول علي درجة الماجستير في طب وجراحة العيون

مقدمة من

الطبيبة/ يسرا شوقى عبد الرحمن مصطفى بكالوريوس الطب والجراحة جامعة بنها

تحت إشراف

أد/ ممدوح حمدى الكفراوى أستاذ طب وجراحة العيون عميد كلية الطب جامعة عين شمس أم/ تامر محمد الرجال أستاذ مساعد طب وجراحة العيون كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس

القاهرة ٢٠١٢

سورة البقرة (٣٢)

CONTENTS

F	Page
LIST OF FIGURES	II
LIST OF TABLES	\mathbf{V}
LIST OF ABBREVIATIONS	VI
I - INTRODUCTION	1
II - AIM OF THE WORK	5
III - REVIEW OF LITERATUREAnatomy of the cornea	6
 Physiology of the cornea 	26
 Corneal biomechanics 	45
Clinical applications of biomechanics:	
 Biomechanics and corneal diseases and othe pathological conditions 	r 79
Biomechanics and ocular surgery	99
Biomechanics and glaucoma	115
 Corneal visualization scheimpflug technology 	135
IV-SUMMARY	141
V- REFERENCES	145
VI- ARABIC SUMMARY	_

LIST OF FIGURES

Fig. No.	Title	Page
1	Histology of normal cornea showing the 5 layers.	7
2	The corneal epithelium and Bowman's layer, showing hemidesmosomes along the basal lamina.	10
3	Ultrastructure of the corneal stroma showing the orientation of collagen fibrils within lamellae.	15
4	Organization of keratocytes in the corneal stroma showing interconnection across lamellae.	19
5	Corneal endothelium and Descemet's membrane.	22
6	Diagram of how proteoglycans attach along the periphery of collagen fibrils via their core proteins (P) and how the GAGs duplex in an anti-parallel fashion in the interfibrillar space.	31
7	Diagram illustrating the opposing forces of the corneal endothelial barrier and metabolic pump. When the leak rate equals the metabolic pump rate, the corneal stroma is 78% hydrated and the corneal thickness is maintained.	
8	Stress-strain curve for linear elastic material (Straight line).	48
9	Stress-strain curve of steel (linear elastic zone, nonlinear plastic zone, and fracture).	48
10	Non-linear elastic material curve.	49
11	Non-linear visco-elastic material curve.	49
12	Stress/strain curve for an elastic and viscoelastic material.	51
13	A photograph of the measurement device.	56
14	Ocular response analyzer.	58
15	Method of operation of the ocular response analyzer.	60
16	Typical signal from a normal eye.	61
17	Typical signal from a normal curve.	63

18	Corneal- compensated intraocular pressure versus central corneal thickness in a population of normal eyes.	69
19	Corneal hysteresis versus central corneal thickness in normal population.	71
20	Correlation between IOP and CH.	73
21	Possible causes of low amplitude applanation signals.	81
22	Differences in the biomechanical parameters provided by the ORA between keratoconus grades.	82
23	Mean corneal hysteresis (top) and corneal resistance factor (bottom) in groups.	83
24	Mean difference between corneal hysteresis & resistance factor (CH-CRF) in groups.	84
25	Typical signals from a keratoconus eye.	84
26	The Ocular Response Analyzer generates a waveform, from which parameters are originate. Several parameters derive from the upper 75% of the applanation peak and others describe characteristics of the upper 50%.	87
27	Typical signals from a Fuchs' dystrophy eye.	93
28	Comparison of corneal hysteresis distribution of normal, keratoconic and Fuchs' subjects.	93
29	Pre and Post LASIK corneal hysteresis.	104
30	Typical signal from a normal subject's eye pre-LASIK. Corneal Hysteresis.	106
31	Signal from the same subject's eye one week post-LASIK.	106
32	Signal from post-LASIK subject.	107
33	Corneal hysteresis of 15 eyes pre- and post-LASIK.	107
34	IOPCC pre and post LASIK in 14 eyes.	108
35	A graph showing a significant decrease in corneal hysteresis and corneal resistance factor after phototherapeutic keratectomy.	110
36	Graph showing preoperative CH, and on the first postoperative day (CH postoperative) after clear corneal cataract.	112

37	Relationship between central corneal thickness (CCT) and intraocular pressure by Goldmann applanation (IOPg) in normal population.	116
38	Plotting the inward and outward applanation events versus GAT on the same corneas at 3 pressure levels.	119
39	Typical waveform from an eye with high IOP (35 mmHg).	122
40	Typical waveform from an eye with high IOP (35 mmHg), but normal CH.	126
41	Signal obtained from the eye of a normal tension glaucoma subject.	128
42	IOPCC and IOPG in 24 NTG eyes.	129
43	Corneal hysteresis and differential intraocular pressure in diagnostic groups.	130
44	Distribution of corneal hysteresis measured by ORA in children with normal healthy eyes and eyes with congenital glaucoma.	131
45	Post-therapeutic correlation of the change in corneal hysteresis and the change in Goldmann-correlated intraocular pressure.	132
46	Pre-therapeutic correlation of CH with IOPG. CH was negatively correlated with IOPG in CPACG eyes before IOP lowering therapy.	134
47	Post-therapeutic correlation of the change in CH and the change in IOPG.	134
48	The Corvis.	135
49	Dynamic Scheimpflug images taken from the CorVis of a normal eye.	136
50	Current measurement features of the Corvis.	137
51	Overlapped images of normal thin cornea (blue) and kearatoconic cornea (red) at the same time point in the course of the CorVis air puff.	138
52	CorVis display from a mild keratoconic cornea.	139
53	CorVis display from a normal cornea.	140

LIST OF TABLES

Table No.	Title	Page
1	Relation between CH and age.	74
2	Demographic details of twin pairs included in the study.	75
3	ORA readings: differences in corneal biomechanical properties in non smokers versus smokers.	n 77
4	Hysteresis and CCT of keratoconic eyes according to grading.	87
5	Biomechanical properties before and after collagen cross-linking treatment.	g 90
6	Hysteresis, CCT, IOP, and GAT of Normal and Fuchs Endothelial Corneal Dystrophy Eyes.	s' 94
7	Biomechanical Measurements in High Myopic, Contralateral, and Normal Eyes.	d 96
8	Changes in ORA parameters after cataract surgery.	114

LIST OF ABBREVIATIONS

AL : Axial length

APON : Acquired pit of the optic nerve

ATP : Adenosine triphosphate

ATPase : Adenosine triphosphatase

CCT : Central corneal thickness

CH : Corneal Hysteresis

CPACG : Chronic primary angle closure glaucoma

CRF : Corneal resistance factor

CXL : Collagen cross-linking

D : Diopter

ECM : Extracellular matrix

FCD : Fuchs' corneal dystrophy

FFKC : Forme fruste keratoconus

GAGs : Glycosaminoglycans

GAT : Goldmann Applanation Tonometer

GS : Glaucoma suspect

HGF : Hepatocyte growth factor

IL-1 : Interleukin-1

IOL : Intraocular lens

IOP : Intraocular pressure

IOPcc : Corneal-compensated Intraocular Pressure

IOPg : Goldmann-correlated Intraocular Pressure

IR : Infrared

KGF : Keratinocyte growth factor

LASEK : Laser Assisted Sub-Epithelial Keratomileusis

LASIK : Laser in situ keratomileusis

LRS : Laser refractive surgery

μm : Micrometermm : Millimeter

mmHg : Millimeters of mercury

ms : Milliseconds

Nm : Nanometer

NTG : Normal tension glaucoma

OHT : Ocular hypertension

OHTS : Ocular Hypertension Treatment Study

ORA : Ocular response analyzer

P1 : Peak 1
P2 : Peak 2

P-value : Probability value

PACG : Primary angle closure glaucoma

PK : Penetrating keratoplasty

POAG : Primary open angle glaucoma

PRK : Photorefractive keratectomy

PTK : Phototherapeutic keratectomy

R² : The coefficient of determination

RSB : Residual stromal bed

UV-A : Ultraviolet A

VF : Visual field

INTRODUCTION

Cornea constitutes the transparent anterior one sixth of the outer coat of the globe. It is a remarkable tissue in that it combines the strength required to fulfill its role of producing a tough container for the inner contents of the eye protecting them from infection and damage, with precise curvature and a high level of transparency to visible wavelengths. This is achieved primarily by the unique structural properties of its main dry constituent, collagen (Morishige et al., 2006).

Mechanics study forces that result in movement or equilibrium. It is the analysis of any dynamic system and strength of materials. Biomechanics is concerned with the medical application of mechanical concepts. It seeks to understand the mechanics of living systems. Organ biomechanics helps us to understand its normal function, predict changes due to alterations. The eye is a structure that moves or changes its shape in response to forces such as the IOP, extra-ocular muscles and surgical intervention and hence can be studied through applied mechanics (Fung, 1981).

The corneal stroma provides important structural integrity of the cornea. It differs from other collagenous structures in its transparency and biomechanical properties. The stromal fibers provide the tensile strength of the cornea and extracellular matrix (Boote et al., 2003).

This network reduces light scatter and contributes to the mechanical strength of the cornea. The peripheral stroma is thicker than the central stroma and the collagen fibrils may change direction to run circumferentially as they approach the limbus (Newton and Meek, 1998).

The storma itself is an inelastic, anisotropic structure that distribute tensile stress unequally throughout its thickness, depending on the corneal hydration (**Dupps and Roberts**, 2001).

The cornea reacts to stress as a visco-elastic material. The visco-elastic response consists of an immediate deformation followed by a rather slow deformation. The immediate elastic response seems to reflect the immediate elastic properties of the collagen fibers, and the steady state elastic response reflects the properties of the corneal matrix (Edmund, 1988).

Since awareness of corneal biomechanics; studies have renewed to measure such a property. A particularly interesting technique has emerged during the last few years; Ocular Response Analyzer (ORA), that enables a dynamic measure for IOP including two applanation events, respectively. The difference between the inward and outward pressures is termed hysteresis and is measured in millimeters of mercury. It is a measure of: corneal damping capacity, visco-elasticity & energy absorption capability of cornea. ORA also provides measurement of IOP that is less affected by the corneal properties in the term of corneal compensated IOP (Wells et al, 2008).

Corneal hysteresis and Corneal Resistance Factor are new measurements that reflect the viscoelastic properties of the cornea, its biomechanical integrity and rigidity. Their measurement assesses the corneal resistance to deformation (Luce, 2005).

These new parameters may be clinically useful in a number of different areas including: Identification of corneal diseases such as keratoconus and Fuchs' Dystrophy, screening potential keratorefractive surgery candidates, accurate IOP measurement and glaucoma diagnosis and management (Luce, 2005).

Corneal Hysteresis (CH) can be used to identify and classify various corneal pathologies; depending on the biomechanical properties of corneal tissue. Subjects whose corneas exhibit low corneal hysteresis, which can be thought of as having a "soft" cornea, are probable candidates for a variety of ocular diseases and complications (Gatinel et al, 2007).

Keratoconic eyes are known to be more elastic and less rigid than normal eyes. Hysteresis was significantly higher in normal than in keratoconic eyes. It may be a useful measurement in addition to CCT (**Shah et al, 2007**).

Over the last decade, refractive surgery has emerged as an attractive option to people with vision problems. The allure of being less dependent on their spectacles drives some people to seek refractive surgery and that was the reason for concerning with improving the visual outcomes after this surgery by taking into consideration the biomechanical properties of the cornea