

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

A NOVEL ALGORITHM FOR GATED EXPERT NEURAL NETWORKS

BY

Rasha Saleh Aiyad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS & COMMUNICATIONS ENGINEERING (COMPUTER ENGINEERING)

Under the Supervision of

Prof. Dr. Samir I. Shaheen

COMPUTER ENGINEERING DEPARTMENT FACULTY OF ENGINEERING, CAIRO UNIVERSITY

Dr. Amir F. Sourial

COMPUTER ENGINEERING DEPARTMENT FACULTY OF ENGINEERING, CAIRO UNIVERSITY

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
November 1997

3,4029-15

A NOVEL ALGORITHM FOR GATED EXPERT NEURAL NETWORKS

BY

Rasha Saleh Aiyad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS & COMMUNICATIONS ENGINEERING (COMPUTER ENGINEERING)

Approved by the Examining Committee : Samu Sale	
Prof. Dr. Samir Ibrahim Shaheen, Thesis Main Advisor	
Prof. Dr. Saad Mohammed Ali Eid, Member	
Prof. Dr. Ayman Ibrahim El-Dessouki, Member Aymu Usless	<i>,</i> ====================================

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
November 1997

CONTENTS

Page	e
LIST OF TABLESv	
LIST OF FIGURES vi	i
ACKNOWLEDGMENTSix	ζ.
ABSTRACT	
1. INTRODUCTION	
1.1 Objectives1	
1.2 Thesis Structure 2	
2. NEURAL NETWORKS	
2.1 Background on Neural Computing4	ŀ
2.2 Benefits of Neural Networks6	ó
2.3 Limitation of Neural Networks	7
2.4 Neural Networks Architectures8	}
2.4.1 Single-layer Perceptron 8	}
2.4.2 Multilayer Perceptron 1	i 1
2.5 Learning Process	13
2.5.1 Supervised Learning	13
2.5.2 Unsupervised Learning 1	14
2.6 Back-Propagation Algorithm	14
2.6.1 Introduction	14
2.6.2 The back-propagation algorithm	15

2.6.3 Application of Multi layer networks using Back-propagation	20
2.6.4 Local Minima	21
2.6.5 The momentum	22
2.6.6 Generalization	23
2.7 Kohonen Self-Organizing Network	25
2.8 The Hopfield Network	27
3. MODULAR NETWORKS	
3.1 Introduction	30
3.2 Advantages of Modular Networks	31
3.2.1 Speed of Learning	31
3.2.2 Data Representation	31
3.2.3 Hardware Constraints	31
3.3 Associative Gaussian Mixture Model	32
3.4 Stochastic-Gradient Learning Algorithm	37
3.4.1 Adapting the Expert Networks	38
3.4.1 Adapting the Gating Network	40
4. A NOVEL GATED EXPERT NEURAL NETWORK	
4.1 Introduction	44
4.2 The Novel Gated Expert Network Architecture	45
4.2.1 The expert networks	45
4.2.2. The gating function	47
4.2.3 The update of the expert networks weights	48
4.2.4 Adjustment of the centers	50
4.3 Training	54
4.4 Performance Measure	54
4.5 Computational Complexity	

5. SIMULATIONS AND RESULTS

5.1 Introduction	57
5.2 Theoretical Applications	58
5.2.1 sin(x)	58
5.2.2 0.9 sin(x)sin(y)	
$5.2.2.1 \ 0.9 \sin(x)\sin(y) + \text{noise}$	70
5.2.3 Dynamic System	.71
5.2.4 A Sorting Problem	75
5.3 Nile River Application	. 78
5.3.1 Importance of the Nile River Problem	78
5.3.2 Inputs to the neural network	78
5.3.3 Previous neural networks forecasting methods	
5.3.3.1 Direct single-step prediction	. 79
5.3.3.2 Output is the difference in flow between the current step an	.d
the next step	79
5.3.3.3 Output is the difference in flow between the next period and	d
the seasonal average of flow	. 79
5.3.3.4 The Discrete Fourier Series Approach	79
5.3.4 The gated expert network approach	. 82
6. Conclusion and Future Work	
6.1 Conclusion	91
6.2 Future Work	92
REFERENCES	93
APPENDIX A	

			·
		·	
	-		

LIST OF TABLES

	Page
Table 5.1	Table of errors and no. of operations for (0.9sin(x))
Table 5.2	Table of errors and no. of operations for (0.9sin(x)sin(y))63
Table 5.3	Table of errors (0.9sin(x)sin(y)) using gated expert network without
	training each expert network alone first
Table 5.4	Table of errors and no. of operations for $(0.9\sin(x)\sin(y)+\text{noise})$ 70
Table 5.5	Table of errors and no. of operations for a Dynamic System 72
Table 5.6	Table of errors and no. of operations for the Sorting Problem for 480
	example
Table 5.7	Table of errors and no. of operations for the Sorting Problem for 1008
	example76
Table 5.8	Table of errors for the Nile River Forecasting Problem
Table 5.9	Table of errors for the expert Networks in the Nile River Forecasting
	Problem84
Table 5.10	Table of errors for the Nile River Forecasting Problem using
	gated expert network88