Study of Right Ventricular Myocardial Systolic Activation in patients with Pulmonary Hypertension by Tissue Doppler Imaging

Thesis Submitted in Partial Fulfillment of Master Degree in Cardiology

> $\mathcal{B}y$ **Wael Gomaa Ibrahim** M.B. Bch

> > Supervised by

Prof. Dr. Maiy Hamdy El-Sayed

Professor of Cardiology Faculty of Medicine- Ain-Shams University

Prof. Dr. Ghada Samir Fl-Shahed

Professor of Cardiology Faculty of Medicine- Ain-Shams University

Dr. Alaa Mahmoud Roshdy

Assistant Professor of Cardiology Faculty of Medicine- Ain-Shams University

> **Faculty of Medicine Ain-Shams University** 7.14

List of Abbreviations

act. T Activation time. .

ANP Atrial Natriuretic Peptide.

AR Aortic regurgitation.

AV block Atrio-ventricular block...

BNP Beta Natriuretic Peptide

BP Blood pressure

CHD Congenital heart disease.

cTDI Color-coded tissue Doppler imaging

CTEPH Chronic thromboembolic pulmonary hypertension.

CXR Chest X-Ray.

Two dimensional echocardiography.

ECG Electrocardiography.

EDD End diastolic dimension.

EDV End diastolic volume.

EEPV Endejection pressure/volume.

EF Ejection fraction.

EIT Electrical Impedance Tomography.

ES Eisenmenger Syndrome.

ESC European Society Of Cardiology.

ESD End systolic dimension.

ESV End systolic volume.

ET Ejection time.

FAC Fractional area change.

FS Fraction shortening.

HIV Human immunodeficiency virus.

IPAH Idiopathic Pulmonary Hypertension.

IVC Inferior vena cava.

IVCT Isovolumic contraction time.

IVRT Isovolumic relaxation time.

IVSd Interventricular septum in diastole.

¬MWT ¬-min walk test.

LA Left atrium.

LV Left ventricle.

Max PV Maximum pressure-volume ratio.

MPAP Mean Pulmonary Artery Pressure.

MRI Magnetic resonance imaging.

MVG Myocardial velocity gradient.

NIH National institutes of health.

NYHA New York Heart Association

PA Pulmonary Artery.

PAH Pulmonary Arterial Hypertension.

PAPVD Partial anomalous pulmonary venous drainage.

PCH Pulmonary capillry hemangiomatosis.

PCWP Pulmonary capillary wedge pressure.

PDA Patent ductus arteriosus.

PEP Pre ejection period

PGI Prostacyclin.

PR Pulmonary regurgitation.

PRV Peak pulmonary regurgitant velocity.

pTDI Pulsed wave tissue Doppler imaging.

PWd Posterior wall in diastole.

PVOD Pulmonary veno-occlusive disease.

PVR Pulmonary Vascular Resistance.

RA Right atrium.

RAP Right atrial pressure.

RIMP RV index of myocardial performance.

RV Right ventricle.

RVAd Right ventricular area in diastole.

RVAs Right ventricular area in systole.

RVOT Right ventricular outflow tract.

RVSP Right ventricular systolic pressure.

SPAP Systolic pulmonary artery pressure.

TGF- β Transforming-growth-factor-beta.

TDI Tissue Doppler imaging.

TR Tricuspid valve Regurgitation.

TPR Total pulmonary resistance.

TSI Tissue synchronization imaging.

TT Tissue tracking

WHO World health organization.

Acknowledgment

First of all, the great thanks and praise to \mathbf{God} who enabled us to complete this work in a beautiful view.

I would like to express my deep gratitude and admiration to **Professor Dr. Maiy Hamdy El-Sayed**, Professor of Cardiology, Ain Shams University, without her continuous guidance and encouragement this study would have never seen light.

I am just as much indebted to **Professor Dr. Ghada Samir El-Shahed**, Professor of Cardiology, Ain Shams University, every step and every detail in this work have been kindly assisted and supported by her effort and her care.

A special measure of appreciation is extended for **Professor Dr. Alaa Mahmoud Roshdy**, Assistant Professor of Cardiology, Ain Shams University. He offered me the utmost care, invaluable advice and unlimited support.

Lastly, I don't forget my family, the best helper for me, their full support, prayers and wishes was a great motive to accomplish this work. My deepest gratitude to them and thanks will never appreciate what I owe them.

Wael Gomaa Ibrahim

Contents

-	IndexI
-	List of tablesII
-	List of figuresIV
-	List of abbreviationsVII
-	AcknowledgementXI
-	Introduction
-	Aim of the study
-	Pulmonary hypertension
-	The right ventricle function
_	Tissue Doppler Imaging
_	Patients and Methods
-	Results
	Discussion Study
	limitations
	Conclusion and Recommendation Summary
	References
-	Arabic summary

List of Figures

۱ –	Figure. 1: Short axis and apical four-chamber view of enlarged
	right-side chambers\\
۲_	Figure. 7: Magnetic resonance imaging perfusion images in a
	pulmonary hypertension patient Y.
٣_	Figure. T: CT scan chest of Primary pulmonary
	hypertension
٤_	Figure. 4: Pulmonary wedge angiography in a 7-year-old child with normal pulmonary circulation
٥_	
-	Figure. •: Histological evaluation of lung biopsy in pulmonary hypertension
٦	
	Figure 7: Macroscpic anatomy of the right ventricle
٠-	Figure. V: Simultaneously recorded ECG, RV analog signal of
	pressure development (dP/dt), phasic pulmonary artery flow,
	pulmonary artery pressure, and RV pressure in the human
A	subject
۸_	Figure A. Pressure–volume loops of the RV under different
	loading conditions. The slope of maximum time-varying
	elastance, maximum pressure-volume ratio, and endejection
^	pressure/volume are displayed on the graph
٦_	Figure 9. Posterior-anterior(a) and lateral (b) chest radiograph
	of patient with idiopathic pulmonary arterial
	hypertension
١٠.	Figure 1. Examples of right ventricular fractional area
	change
١١.	Fig. 11: Apical four-chamber view (systole) showing enlarged
	right-side chambers £ ٢
	Figure ۱۲. Doppler tricuspid regurgitation jets ٤٣
۱٣.	Figure \range : Invasive measurements of mean PA and RA
	pressures and Doppler measurement of PRV ٤٧
١٤.	-Figure 15. Magnetic resonance images of right ventricle at
	diastole, mid systole and end systole ٤٩
10.	-Figure 10. Pulsed wave tissue Doppler at the septal mitral
	annuluso٦
١٦.	-Figure 17. YD-color tissue Doppler imaging of LV posterior
	septum and lateral wall in apical & chamber view

۱۷-Figure ۱۷. Standard M-mode color tissue Doppler
۱۸-Figure ۱۸. Curved M-mode color tissue Doppler
¹⁹ -Figure ¹⁹ . Reconstructed pulsed wave tissue Doppler from
the basal posterior septum
Y Figure Y · . Strain of the basal posterior septum, the negative
peak strain (arrow) occurred slightly after aortic valve closure
(AVC
Y)-Figure Y). Strain rate of the basal posterior septum, the arrow
points to the peak systolic strain rate
TY-Figure TY. Tissue tracking of the posterior septum, there is
gradual increase in the displacement from apex to base 75
۲۳-Figure ۲۳. Quantitative analysis of a dobutamine stress
echocardiographic study by TDI ^{V \}
۲٤-Figure ۲٤. RV tracing area during diastole. (Patient. No
٣٢)٧٩
Yo-Figure Yo. RV tracing area during systole. (Patient. No
۲۲)٧٩
۲٦-Figure ۲٦. Pulmonary artery systolic pressure from tricuspid
regurgitation Doppler signal (Patient No ۲۲)
TV-Figure TV. Measurement of RV basal Sm peak velocity^\
۲۸- Figure ۲۸. Measurement of RV basal Em peak velocity ^A
۲۹-Figure ۲۹. Measurement of RV basal Am peak velocity
AY
rFigure. r. Measurement of RV activation
time^x
TI-Figure TI. Gender distribution of the study
group ^{A £}
TY-Figure TY. Distribution of the study group according to
diagnoses
۳۳-Figure ۳۳. Significant decrease in FAC between PAH group
and control group, but there were no significance between two
groups in FS% & EF%
AY
۴٤-Figure ۴٤. TDI of Right ventricular basal myocardial Sm, Em
and Am peak velocities of both study and control

groups^
۳٥-Figure ۴٥. TDI of Septal myocardial Sm, Em, Am velocities and activation time were lower in PAH group than control group
Ti-Figure Ti: TDI of the LV myocardial Sm, Em, Am velocities and activation time were lower in PAH group than control group
end diastolic and end systolic dimensions and EF% and FS% were almost equal in both PAH group and control group
The Figure The Significant difference between PAH group and control group as regard velocity of TR and RVSP, MPAP and FAC
^γ 9-Figure ^γ 9. Significant decrease in LV basal lateral wall velocities in PAH group than control group
۱- Figure ن. Significant decrease in RV basal lateral wall TD velocities in PAH group than control group٩٣ الما الما الما الما الما الما الما الم
in PAH group than control group
۴۳-Figure ۴۳. Correlation between RV myocardial systolic delay and FAC
٤٤-Figure ٤٤. Correlation between RV myocardial systolic activation delay and PASP
to- Figure to. the study subgroup with normal FAC and the control group as regard the FAC and LV & RV myocardia activation delay and activation time
as regard to FAC and LV & RV Act. T and myocardial delay respectively
-Figure ¿ Y. Study group with normal FAC and impaired FAC group as regard to FAC and LV & RV act. T and myocardial delay

List of Tables

\- Table \. The Evian Clinical Classification
Y- Table Y. Revised Clinical Classification of Pulmonary Hypertension (Venice Y • • * *)
Υ- Table Υ. Updated clinical classification of pulmonary hypertension
٤- Table ٤. Anatomical-pathophysiological classification of congenital systemic-to-pulmonary shunts associated with pulmonary arterial hypertension
°- Table °. WHO functional classification of pulmonary hypertension
7- Table 7. Arbitrary criteria for estimating the presence of PH based on tricuspid regurgitation peak velocity and Doppler-calculated PA systolic pressure at rest
V- Table V. Choice of vasodilatorΥΛ
۸- Table ۸. Summarizes important anatomic and physiological characteristics of the RV and LV۳٦
٩- Table ٩. Estimation of right atrial pressure from IVC. ٤٤
۲۰- Table ۱۰. Demographic characteristics of the study group۸٤
۱۱- Table ۱۱. Distribution of the study group according to diagnoses

۱۲- Table ۱۲. Transthoracic echocardiographic parameters of PAH group and control group
۱۳- Table ۱۳. TDI analysis of Sm, Em, Am velocities and activation time of basal lateral right ventricle and left ventricle and inter ventricular septum
۱٤- Table ۱٤. Paired T test between the echocardiographic variables in the study group and the control group٩٠
No- Table No. Comparative TDI analysis of basal LV and RV and interventricular septal Sm, Em, Am, act. Time among PAH group and control group
V7- Table V7. RV myocardial systolic delay in PAH group versus control group
Table 17. Study group with normal FAC and control group as regard to FAC and LV & RV Act. T and myocardial delay respectively
۱۸- Table ۱۸. Study group with impaired FAC and control group as regard to FAC and LV & RV Act T and myocardial delay respectively٩٨
19- Table 19. Study group with normal FAC and impaired FAC group as regard to FAC and LV & RV Act. T and

Introduction

Congenital heart disease (CHD) is surely not uncommon with an incidence of 1/17. live births. The risk is estimated at 7 to 7% in children with an affected first-degree relative (higher if the relative is a parent) (1).

Approximately one third of all patients with CHD who have not undergone corrective procedures will die from pulmonary vascular disease. However, the frequency of pulmonary hypertension and the subsequent development of reversed shunting vary depending on the specific heart defect and operative interventions (*).

The assessment of pulmonary vascular resistance (PVR) is an essential component of the evaluation of any patient with known or suspected pulmonary hypertension secondary to CHD. The current standard for measuring the pulmonary vascular resistance is cardiac catheterization (well established technique, its invasive nature poses significant risk to the seriously ill patients who are usually in need of these measurements) (*r).

A noninvasive method of evaluating PVR would (¹) allow more frequent assessment of PVR, (ኘ) facilitate the monitoring of individual patient responses, (ኘ) provide a safer and easier method of estimation (٤) provide a wide spread method of diagnoses that would help in early detection of patients liable to develop pulmonary hypertension^(τ).

It is therefore no surprise that echocardiographers continue to search for accurate, noninvasive means of quantifying PVR. Conventional echocardiography only provides structural information