

Ain Shams University Faculty of Science Physics Department

Investigation of New Stainless Steels Developed for Industrial and Nuclear Applications

Thesis

Submitted for Fulfill the Requirements of
M.Sc. Degree
In Nuclear Physics

By

Ahmed Said Mohamed Tageldin Mohamed

B.Sc. in Physics

Supervisors

Prof. / Samir Ushah El-Kameesy

Prof. / Mamdouh Mahmoud Eissa

Professor of Nuclear Physics Ain Shams University Professor of Steel & Ferroalloys Technology (CMRDI)

Dr / Elsayed Salama Ahmed

Associate Professor of Nuclear Physics Ain Shams University

2017

Ain Shams University Faculty of Science Physics Department

Degree: M.Sc. in Nuclear Physics.

Title: Investigation of New Stainless Steels Developed for

Industrial and Nuclear Applications.

Name: Ahmed Said Mohamed Tageldin Mohamed.

Thesis Supervisors:	Signature	
Prof. / Samir Ushah El-Kameesy		
Physics Department, Faculty of Science,		
Ain Shams University		
Prof. / Mamdouh Mahmoud Eissa		
Central Metallurgical Research Institute (CMRD)		
As. Prof. / El-Sayed Salama Ahmed		
Physics Department, Faculty of Science,		
Ain Shams University		

Ain Shams University Faculty of Science Physics Department

Name: Ahmed Said Mohamed Tageldin Mohamed

Degree: M.Sc. in Nuclear Physics.

Department: Physics.

Faculty: Science.

University: Ain Shams.

Graduation date: 2006, Ain Shams University.

Registration date: 10/11/2014

Grant date: / / 2017

بسم الله الرحمن الرحيم

"وَأُنْزَلْنَا الْحَدِيدَ فِيهِ بَأْسٌ شَدِيدً

وَمَنَافِعُ لِلنَّاسِ".

صدق الله العظيم

(الحديد:الآية 25)

CONTENTS

CONTENTS

Title	Page
Contents Acknowledgement List of Tables List of Figures List of Abbreviations	1 3 4 5 7
List of Symbols Abstract	9 10
CHAPTER 1 Introduction and Pr	revious Work
1.1.Introduction	12
1.2.Previous Work	13
1.3.Aim of The Present Work	22
CHAPTER 2 Stainless Steel as a Rea	ctor Material
2.1. Introduction2.2. Stainless Steel for Reactor Fuel Cladding	24 24
2.3. Control Rod Cladding and Absorbing Materials2.4. Pressure Vessel	28 29
2.5. Pipes and Valves	30
2.6.Steam Generators	32
2.7.Steel for Fusion Reactor System	35
	ental Setups
 3.1.Samples Preparation 3.2.Chemical Analysis 3.3.Optical Microscope Observation 3.4.Mechanical Properties 3.4.1. Vickers hardness measurements 3.4.2. Tensile properties determination 3.4.3. Impact energy absorption 3.5.Density Measurements 3.6.Gamma Rays Attenuation Measurements 	39 40 41 41 41 42 44 45 46
	nd Discussion
4.1.Chemical Analysis	48

CONTENTS

4.2.Microstructure	48
4.2.1. Schaeffler diagram	48
4.2.2. Optical microscopy observation	51
4.2 Machanical Dramantics	<i>5</i> 1
4.3.Mechanical Properties	54
4.4.Gamma Ray Attenuation Properties	59
4.5. Neutron Attenuation Properties	67
Conclusion	69
References	71
Publications	78
Arabic Summary	I

ACKNOWLEDGEMENT

Acknowledgement

First and above all, Author bow head thanking "Allah" for helping and inspiring to accomplish all this work.

Author is deeply grateful to **Prof.** Samir Ushah El kameesy, Professor of Nuclear Physics, Ain Shams University, for providing this opportunity to work under his esteemed guidance, for suggesting the work and supervising it, for useful comments and helping during the course of this work. Under his supervision I learned how to overcome many difficulties in my work. I also wish to express profound gratitude for his constant encouragement and critical discussions throughout this research program and during the preparation of this thesis.

Author would like to express his sincere gratitude to *Prof. Mamdouh Mahmoud Eissa*, Professor of Steel & Ferroalloys Technology (CMRDI). This work would not have been possible without his guidance, support and encouragement. For his effective supervision, helpful comments, and the extensive time he devoted to this work, providing many facilities during preparation and experimental measurements, and scientific supervision that helped to accomplish this study.

Author owes a great debt of gratitude to the completion of this work to **As. Prof / ElSayed Salama Ahmed,** Associate professor of Nuclear Physics, Ain Shams University, for his supervision, advice, and crucial contribution from the very early stage of this research by his fruitful discussion throughout this work. Above all and the most needed, he provided me unflinching encouragement and support in various ways.

List of Tables

Table	Description	Page
Table (4.1)	Chemical composition and density of the studied	49
	stainless steels alloys	
Table (4.2)	Chromium and nickel equivalent values for the studied	50
	stainless steel alloys	
Table (4.3)	Mechanical properties of Tungsten stainless steel	58
	samples	
Table (4.4)	14 MeV neutron cross sections of the studied stainless steel alloys	68

List of Figures

Figure	Description	Page
Fig (2.1)	Stainless steels distribution in Boiling Water Reactor (BWR)	25
Fig (2.2)	Stainless steels distribution in Pressurized Water Reactor	25
	(PWR).	
Fig (2.3)	The reactor pressure vessel.	30
Fig (2.4)	Typical shape of stainless steel reactor piping.	31
Fig (2.5)	Different types of reactor valves.	32
Fig (2.6)	Schematic of a vertical steam generator.	34
Fig (2.7)	The horizontal shape of steam generator.	34
Fig (2.8)	Schematic diagram of fusion reactor.	36
Fig (3.1)	The pilot plant induction furnace used in melting of different	40
	investigated steels.	
Fig (3.2)	Spectrographic analyzer (SPGA) used to analyze the	40
	investigated steels.	
Fig (3.3)	Image analyzer device.	41
Fig (3.4)	Hardness and micro-hardness testing machine.	42
F' (2.5)		42
Fig (3.5)	Standard tension test specimen, ASTM E-8.	43
Fig (3.6)	SHIMADZU Tensile Testing Machine.	43
Fig (3.7-a)	Dimensions of Charpy-V impact test specimens, machined	44
	according to standard.	
Fig (3.7-b)	Impact testing machine.	44
Fig (3.8)	Experimental setup of gamma ray narrow beam transmission	46
	method.	
Fig (4.1)	Shaeffler diagram for the investigated stainless steel alloys.	50
Fig (4.2-a:f)	Optical microscope observation of the studied stainless steel	51-54

	alloys.	
Fig (4.3)	Examples of the prepared tensile samples.	54
Fig (4.4)	Examples of the prepared impact samples.	55
Fig (4.5)	Hardness variation of the investigated stainless steel alloys.	56
Fig (4.6)	Yield strengths at room temperature of the investigated	56
	stainless steel alloys.	
Fig (4.7)	Ultimate tensile strength at room temperature of the	57
	investigated stainless steel alloys.	
Fig (4.8)	Elongation at room temperature of the investigated stainless	57
	steel alloys.	
Fig (4.9)	Impact at room temperature of the investigated stainless steel	58
	alloys.	
Fig (4.10-a:f)	Attenuation curves of prepared stainless steel samples at	59-62
	different gamma ray energies.	
Fig (4.11)	Gamma ray linear attenuation for the studied standard	63
	stainless steel.	
Fig (4.12)	Half value layers of gamma ray for the studied stainless	63
	steels.	
Fig (4.13-a:f)	Experimental and theoretical mass attenuation coefficients	64-67
	of the investigated samples as a function of gamma ray	

energies.

List of Abbreviations

Abbreviations	Description
AGR	Advanced gas-cooled reactor
AISI	American Iron and Steel Institute
ASME code	The American Society of Mechanical Engineers
BCC	Body center cubic crystal structure
BCT	body-centered tetragonal
BWR	Boiling Water Reactor
Ci	Curie (Activity unit)
CMRDI	Central metallurgical research institute
Cr	Chromium
dpa	displacements per atom
F/M	Ferritic/martensitic stainless steels
GIV reactors	Fourth generation of nuclear reactors
GTAW	Gas tungsten arc welding
HPGe	The Hyper Pure Germanium detector
HVL	The half value layer
Inconel	Nickel chromium alloy
ITER	International Thermo-nuclear Experimental Reactor
keV	Kilo-electron Volt
LFR	Lead-cooled reactor
LOCA	Loss of coolant accidents
MeV	Mega-electron Volt
Mox	Mixed oxide fuel is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium
MPa	Mega Pascal

MSR Molten salt reactor

Ni-Cr stainless

steel

The stainless containing nickel and chromium

ODS Alloy Oxide dispersion strengthened alloys PCMI Pellet cladding mechanical interaction

PWR Pressurized Water Reactor

RBMK High power channel-type reactor

RPV Reactor pressure vessel

SCWR Super critical water cooled reactor

SFR Sodium-cooled fast reactor

SGs Steam Generators SiC Silicon carbide

SMAW Shielded metal arc welding SPGA Spectrographic analysis

SS Stainless steel

TOKAMAK Toroidal chamber with magnetic coils

Tristructural isotropic fuel, a type of micro fuel particle

TRISO consisting of a fuel kernel composed of uranium oxide

(sometimes uranium carbide) in the center, coated with four

layers of three isotropic materials

VHTR Very high temperature reactor VV-IWS Vacuum Vessel In-wall Shield

wt Weight

XRD X-ray diffraction

α - Phase Ferritic structure in stainless steel
 γ- Phase Austenitic structure in stainless steel

List of Symbols

Symbol	Description
μ	Linear attenuation coefficient.
$\sigma_{Exp.}$	The experimental mass attenuation coefficients.
$\sigma_{Theo.}$	The theoretical mass attenuation coefficients.
α	Alpha particle.
K	Kelvin temperature degree.
kWm^{-1}	Kilo-Watt per meter.
E	Energy.
mm	Millimeter.
ml	Milliliter.
kV	Kilo-Volt.
kg	Kilogram.
I_{o}	Initial intensity of radiation (gamma rays and neutrons).
I	Intensity of radiation after passing through thickness (gamma
	rays and neutrons).
$\boldsymbol{\chi}$	Sample thickness.
W_i	Fractional weight of the element.
ho	Density.
\sum_{R}	Macroscopic removal cross section.
ho	Density.