Thesis

Submitted for partial fulfillment for master degree in Nephrology

By

Tarek Atef Taha

M.B.B.Ch.

Under supervision of

PROF.DR. GAMAL ELSAYD MADY

Prof. of internal medicine & nephrology
Ain shams university

DR. MONA HOSNEY ABDEL-SALAM

Ass.Prof of internal medicine & nephrology
Ain shams university

DR. WALEED ANWER ABDEL- MOHSEN

Lecturer of internal medicine & nephrology Ain shams university

> Faculty of Medicine Ain Shams University 2012

This file was edited using the trial version of Nitro Pro 7
Buy now at www.nitropdf.com to remove this message

محافظة بني سويف

ستير في امراض الكلي

الطبيب/ طارق عاطف طه بكالوريوس الطب و الجراحة

ا.د/جمال السيد ماضى استاذ الباطنة و الكلى جامعة عين شمس

ا.د/منى حسنى عبد السلام استاذ مساعد الباطنة و الكلى جامعة عين شمس

د/ وليد انور عبد المحسن عين شمس

كلية الطب جامعة عين شمس القاهرة

This file was edited using the trial version of Nitro Pro 7 Buy now at www.nitropdf.com to remove this message Summary

HCV infection still remains a major health problem that can cause substantial liver related morbidity and mortality in patients with ESRD.

The global prevalence of hepatitis C virus (HCV) infection estimated to be around 1.6 - 3% worldwide, Egypt has the largest epidemic of hepatitis C virus (HCV) in the world with 10 - 13% of the population infected with HCV.

The prevalence of anti-HCV positivity among dialysis patients varies in different countries from (3%-75% worldwide), unfortunately Egypt also is considered one of the countries with the highest prevalence.

This work is a part of project aiming to survey about HCV among HD patients, assessing its prevalence, seroconversion and study risk factors associated with HCV seroconversion among hemodialysis patients in Egypt. This project is modulated by the nephrology department, Ain Shams University.

This study was conducted upon 937 ESRD patients on regular HD sessions attending 11 different HD units in Beni Suef governorate, districts included in this study were El-Fashn El-wasta, Beni suef, Ehnasia, Beba, Smosta and Naser.

All patients were evaluated using a questionnaire form for assessment of risk factors claimed to be responsible for HCV seroconversion among HD patients such as; age by years, gender, duration of hemodialysis, previous blood transfusion, previous surgery, isolation procedures in the centers, infection control measures, dialysis in

This file was edited using the trial version of Nitro Pro 7
Buy now at www.nitropdf.com to remove this message

وَمَن يَتَق ٱللَّهَ يَجْعَل لَهُ ' مَخْرَجًا (٢) ويَررْرُقهُ مِن حَيثُ لَا يَحْسَبِ

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof.dr. Gamal Elsayd Mady,** Professor of Internal Medicine and Nephrology, Faculty of Medicine- Ain Shams University for his meticulous supervision, for his kind guidance, valuable instructions and generous help.

I am deeply thankful to **Dr. Mona Hosney Abdel-Salam** Ass. Professor of Internal
Medicine and Nephrology Faculty of
Medicine- Ain Shams University for her
great help, outstanding support, active
participation and guidance.

Special thanks are due to **Dr. Walid Anwer Abdel- Mohsen,** Lecturer of internal medicine and nephrology ,Faculty of Medicine- Ain Shams University for his sincere efforts, fruitful encouragement.

Tarek Atef

List of Abbreviations

This file was edited using the trial version of Nitro Pro 7
Buy now at www.nitropdf.com to remove this message

AST Aspartate Aminotransferases

C Complement

CDC Center for Diseases Control and Prevention

CKD Chronic kidney disease

DM Diabetes mellitus

DOPPS Dialysis outcomes and practice patterns study

EHMs Extrahepatic manifestations

EIA Enzyme immunoassay

ELISA Enzyme Linked Immunosorbent Assay

ESRD End stage renal disease

ETR End-of treatment response

FDA Food Drug Administration

GFR Glomerular filtration rate

HCV Hepatitis C Virus

HBV Hepatitis B Virus

HbA1c Glycosylated hemoglobin

HCC Hepatocelular carcinoma

HCWs Health care workers

HD Hemodialysis

HIV Human Immunodeficiency Virus

HTN Hypertension

Ig Immunoglobulin

K/DOQI kidney Disease Outcomes Quality Initiative

IFNs Interferons

LPDs Lymphoproliferative disorders

MC Mixed cryoglobulinemia

Maintenance Hemodialysis

MPGN Membranoproliferative glomerulonephritis

NCR Non coding region

NIH National Institute of Health

NK Natural killer

NKF National Kidney Foundation

PCR Polymerase Chain Reaction

PD Peritoneal dialysis

PEG-IFN Pegylated interferon

RCTs Randomized controlled trials

RF Rheumatoid factor

RIBA Recombinant Immunoblot Assay

SVR Sustained viral response

TMA Transcription mediated amplification

TLR3 Toll like receptors

WHO World Health Organization

This file was earted using the community of the move this message This file was edited using the trial version of Nitro Pro 7

with the hepatitis C virus (HCV), which is responsible for over 1 million

deaths from cirrhosis and primary liver cancers (Poynard et al, 2003).

Hepatitis C is the most common cause of chronic viral liver disease haemodialysis patients (Hinrichsen et al., 2002)

Both HCV and chronic renal disease are common and potentially serious medical problems throughout the world. In recent years, it has become clear that these two conditions are linked in several important ways. Indeed, some forms of renal disease are precipitated by HCV infection (Meyers et al, 2003). However, patients with end-stage renal disease (ESRD) are at increased risk for acquiring HCV infection (Meyers et al, 2003)

Hemodialysis patients are at particular high risk for bloodborne infections because of prolonged vascular access and potential for exposure to contaminated equipment. It has been estimated that, among patients on hemodialysis, the prevalence of HCV infection varies greatly, from less than 5% to nearly 60% according to different areas of the world (Furusyo et al, 2000 and Tang and Lai, 2005).

Regardless of the geographic location, however, the prevalence is consistently associated with patient age and the number of transfused blood products (Tang and Lai, 2005)

The prevalence of HCV infection among HD patients varies from country to country and from one center to another. The reported prevalence of HCV infection among dialysis patients in developed countries ranges from 3.6 to 20%; (Jadoul et al., 2004). it is much higher in developing countries (jaiswal et al., 2002). The prevalence of anti-HCV among dialysis patients was 8.4% in the United States (2000) 43.9% in Saudi Arabia (2001), 30% in India (2002), and 41% in Turkey (2001) (Tokars et al., 2002). In Egypt according to the Egyptian renal registry the prevalence is 52.1 % (Afifi 2009).

Introduction	
Aim of the work	
Review of Literature	
HCV overview	17
HCV-related kidney diseases	46
Infection control	74
Patients and Methods	88
Results	92
Discussion	111
Summary	120
Conclusion	123
Recommendations	125
References	128
Arabic Summary	147

This file was edited using the trial version of Nitro Pro 7

Buy now at www.nitropdf.com to remove this message

Title Page No.

in

Fig. (1):	General view on the natural history of HCV18
Fig.(2):	Sources of infection for hepatitis C21
Fig.(3):	Current model of the HCV lifecycle28
Fig.(4):	Multifactorial mechanisms leading to hepatitis steatosis
	HCV29
Fig. (5):	Schematic representation of EHM categories36
Fig. (6):	Stopping rule for the treatment of chronic HCV41
Fig. (7):	Pathogenesis of Circulatory Abnormalities and Renal
	Failure in Cirrhosis55
Fig. (8):	An algorithmic Approach to the treatment of HCV
	realeated MC60
Fig. (9):	Hand washing with soap&water79
Fig. (10):	Hand Hygiene with alcohol80
Fig. (11):	How to don and remove sterile gloves81
Fig. (12):	How to don and remove non-sterile gloves82
Fig.(13):	Plan of hemodialysis unit86

		20
Table (2):	HCV-related extrahepatic manifestations	34.
Table (3):	Prevalence of clinical extrahepatic manifestations	35
Table (4):	Monitoring parameters for Interferon-based therapies we or without Ribavirin	
Table (5):	Main types of renal failure in patients with cirrhosis	.52
Table (6):	Recommended Treatment of HCV Infection in Patients	
With CKD		58
Table (7):	Specific therapies for the Hepatorenal Syndrome in patients w	ith
	cirrhosis	.61
Table (8):	Core infection prevention and control interventions health-care facilities.	
Table (9):	The questionnaire form used in this study	91
Table (10):	Gender distribution in the study	94
Table (11):	Age distribution by years among HD patients	95
Table (12):	HCV prevalence at start of dialysis	96
Table (13):	HCV prevalence by the time of the study	97

This file was edited using the trial version of Nitro Pro 7

Buy now at www.nitropdf.com to remove this message

Table (14): prevalence of HCV seroconvrgence98
Table (15): Prevalence of chronic viral hepatitis among HD patients: (HCV, HBV and HCV/HBV co-infection) at start or dialysis
Table (16): Correlation between HCV sero-converted and HCV negative cases regarding age and Duration of HD
Table (17): causes of renal failure in the studied group
Table (18): Comparison between HCV sero-converted and HCV free cases regarding Blood transfusion
Table (19): Comparison between HCV sero-converted and HCV free cases regarding previous surgery
Table (20): Comparison between HCV sero-converted and HCV free cases regarding Switching Dialysis
Table (21): Comparison between HCV sero-converted and HCV free cases regarding application of infection Control104
Table (22): Comparison between HCV sero-convertered and HCV free cases regarding isolation procedures
Table (23): Comparison between HCV seroconverted and HCV free cases regarding their gender

regarding HBV	106
Table (25): Comparison between HCV seroconverted and HCV free regarding Family history of HCV	
Table (26): Comparison between HCV seroconverted and HCV free regarding history of Shistozomiasis	
Table (27): Categorical risk factors for seroconversion – Univa	
Table (28): Risk factors for seroconversion – Multivariable analysis a logistic regression	·