Cobalt Chromium versus Zirconia frameworks on stresses induced in implants supporting structures using ALL-ON-4®protocol (Strain Gauges Analysis)

Thesis Submitted to prosthodontic department Faculty of Dentistry, Ain-Shams University for Partial Fulfillment of the Requirements of Master Degree in Oral and Maxillofacial Prosthodontics

By Yomna Mamdouh Mohamed

B.D.S. 2006

Faculty of Dentistry Ain-Shams University

Faculty of Dentistry Ain-Shams University 2017

Supervisors

Professor Dr. Rami Maher Ghali

Professor of Prosthodontics,
Vice Dean of Community Service and Environmental
Development,
Faculty of Dentistry, Ain-Shams University

Dr. Mahmoud El Moutassim Salah-Eldin El Homossany

Lecturer of Prosthodontics, Faculty of Dentistry, Ain-Shams University

Dr. Shaimaa Lotfy Mohamed

Lecturer of Prosthodontics, Faculty of Dentistry, Ain-Shams University To who makes my dreams comes true

My Great family to whom I owe a lot

My Dear mum, father & sister

My beloved husband

And my lovely daughters

ACKNOWLEDGEMENT

I would like to express my most sincere gratitude and grateful appreciation to Dr. Rami Maher Ghali, Professor of prosthodontics, Faculty of Dentistry, Ain-Shams University from whom I learnt a lot. I am so grateful and thankful for his endless support, encouragement, understanding, patience, help and guidance during this study.

My sincere thanks are also extended to Dr. Mahmoud El Homossany, lecturer of prosthodontics, Faculty of Dentistry, Ain-Shams University, for his spiritual encouragement, sincere cooperation and valuable advices during this work.

My great thanks to Dr. Shaimaa Lotfy Mohamed, lecturer of prosthodontics, Faculty of Dentistry, Ain-Shams University for her help & support in this study.

I would like to thank all the members of Prosthodontics Department, Faculty of Dentistry, Ain-Shams University for their help and guidance during the preparation of this study.

I would like also to thank 3D vision team specially Dr. Rami Gamil for his great help in this study.

Contents

LIST OF FIGURES	
LIST OF TABLES	
INTRODUCTION	1
REVIEW OF LITERATURE	3
Edentulism	3
Retention in complete denture	4
All on 4 concept	7
Inclusion criteria for all on 4	11
Materials used for construction of complete fixed detachable	
prosthesis	12
Hybrid prosthesis (cobalt-chromium)	14
Zirconia	17
CAD-CAM	18
Rapid Prototype	21
Stress Analysis	24
Photoelastic techniques	24
Finite Element Analysis	26
Strain gauges	28
Principles of strain gauge	30
Application of strain gauges in prosthodontic research	31
Limitations of strain gauge technique	33
AIM OF THE STUDY	35
MATERIALS AND METHODS	36

RESULTS	67
DISCUSSION	76
SUMMARY	89
CONCLUSION	92
REFERENCES	93
ARABIC SUMMARY	

List of Figures

Figure 1: 3Shape desktop scanner	.37
Figure 2: STL file generated from 3 shape scanner	37
Figure 3: STL file generated from 3 shape scanner with designed	
implants sites	37
Figure 4: ULTRA 3SP 3D printer	39
Figure 5: Printed cast	39
Figure 6: Mucosa stimulator design is made	40
Figure 7: Mucosa Key Index is fabricated	40
Figure 8: Implants are inserted in their site	41
Figure 9: Mucosa stimulator was made of Multisil Mask	41
Figure 10: Duplicated cast	43
Figure 11: Multi-units abutments (straight and angulated)	.43
Figure 12: Maxillary cast with multi-units abutments screwed or	1
implants	43
Figure 13: Transfer copings were inserted in place	44
Figure 14: Transfer coping abutments were joined by wax and P	ľ
KU plast	44
Figure 15: Special open acrylic tray is made	45
Figure 16: Impression was made by rubber base silicone	45
Figure 17: Plastic abutments are joined by wax and PI KU plast.	.46
Figure 18: Wax pattern was sprued and invested	47
Figure 19: Co-Cr metal framework was casted and finished and	
polished	47

Figure 20: Acrylic teeth setting and waxing up denture	47
Figure 21: Teeth are removed from wax by silicone key	48
Figure 22: Wax is removed	48
Figure 23: Pink visiolign material is made	49
Figure 24: Finished Co-Cr denture	49
Figure 25: SHERA scan spray	50
Figure 26: Scaning denture by desk top-scanner (Identica blue)	Job
definition on Exocad 2016 (open system)	51
Figure 27: Job definition on Exocad system	51
Figure 28: Virtual anatomic waxup	52
Figure 29: Screw retained (manual position)	52
Figure 30: Gingiva scanned separately	53
Figure 31: Scan of Co-Cr metal denture	54
Figure 32: Finish line detection	56
Figure 33: Define screw channel manually	56
Figure 34: Verification of wax up on screw channel	57
Figure 35: Providing space for cementation	58
Figure 36: Controlling gingiva emergency profile	58
Figure 37: Calculation of wax up	59
Figure 38: Final restoration is adapted on wax up	59
Figure 39: Milling of restoration	60
Figure 40: Final zirconia denture	60
Figure 41: Strain gauges embedded in their grooves	64
Figure 42: Universal testing machine	64
Figure 43: Strain-meter	65

Figure 44: Bilateral loading65
Figure 45: Unilateral vertical load
Figure 46: Unilateral oblique load66
Figure 47: Bar chart representing effect of two materials on stresses
on implants after bilateral load68
Figure 48: Bar chart representing effect of two materials on stresses
falling on implants after unilateral load (vertical load)69
Figure 49: Bar chart representing effect of two materials on stresses
falling on implants after unilateral load (oblique load)70
Figure 50: Bar chart representing interaction of the type of the
material and the load side after unilateral load71
Figure 51: Bar chart representing interaction of the type of the
material and the load side after oblique load73
Figure 52: Bar chart representing interaction of the type of the
material and vertical and oblique loads in the loaded side74
Figure 53: Bar chart representing weight of Cobalt Chromium and
Zirconia fixed detachable prosthesis

List of Tables

Table 1: Mean and standard deviation of stresses after bilateral load
(vertical load)67
Table 2: Mean and standard deviation of stresses after unilateral load (vertical load)
Table 3: Mean and standard deviation of stresses after unilateral
load (oblique load)70
Table 4: Mean and standard deviation of interaction between loaded
and unloaded side after vertical load71
Table 5: Mean and standard deviation of interaction between loaded
and unloaded side after oblique load72
Table 6: Mean and standard deviation of interaction between the
type of the material and vertical and oblique loads in the loaded
side74
Table 7: Weight of Cobalt Chromium and Zirconia fixed detachable
prosthesis

Introduction

Edentulism is the terminal outcome of a multifactorial process including biological processes such as caries, periodontal diseases, pulpal pathology, trauma, oral cancer as well as non-biologic factors related to dental procedures.

It is conservatively assumed that ten percent of the world's population of 6 billion is between partially or totally edentulous. The choice between a fixed prosthesis and an overdenture when treating the edentulous maxilla with implants shows wide variation both within and between countries.

A wide variety of treatment modalities exist for the edentulous patient. The preferable design for the edentulous patient was the fixed implant-supported prostheses. Many patients prefer this design as it provides them with a "natural feel" which they find comparable to their own teeth regarding both esthetics and function.

The All-on-4® protocol as set forth by for immediately rehabilitating the edentulous maxilla was used for fully edentulous patients as well as being applied to partially dentate patients who preferred a fixed alternative to an interim removable denture during implant healing. (1)

Three-dimensional (3D) digital models obtained from intraoral scanners (IOS) can be used as an alternative to conventional casts. They can be stored easily, require little storage space and can be transmitted digitally.

Rapid prototyping (RP) is a suitable manufacturing method for structures with a high geometric complexity and heavily undercut features, which cannot be fabricated easily with traditional manufacturing methods. RP techniques, such as fused deposition modeling (FDM) three-dimensional printing (3DP). (2)

CAD/CAM systems have enabled the fabrication of frameworks from solid blocks of Ti, Co-Cr, and Zirconia.

So this study was conducted to answer the question which material will transfer less stresses to implant supporting structure Co-Cr or Zirconia?

Review of Literature

Edentulism

Edentulism is a term defined as the loss of all permanent teeth and is the outcome of a multifactorial process involving biologic process (dental caries, periodontal disease, trauma and others) as well as non-biologic factors related to dental procedures (access to care, patient preferences). (3)

The complete edentulism distribution and prevalence between developed and less developed countries may be associated with a complex interrelationship between cultural, individual and socioeconomic factors and health. World health organization databanks indicate that dental caries is prevalent in the majority of countries internationally with some reporting 100% incidence in their populations, severe periodontal disease is estimated to affect 5-20% of the population and the incidence of complete edentulism has been estimated be- tween 7% and 69% internationally. (4)

Edentulism results from poor public health that substantially affects oral and general health status, as well as quality of life. It is an important but often-overlooked public health issue, especially for the elderly. Oral health