

AIN SHAMS UNIVERSTY FACULTY OF ENGINEERING

Electronics and communications Engineering Department

Functionality Improvement of SDH Multiplexer In Backbone Transmission Networks

A thesis submitted in partial fulfillment for the requirements of the degree of

Master of Science in Electrical Engineering

Submitted by

Eng. Ayman Ahmed Elsayed Ali

Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University

Supervised by

Prof. Abdelhalim Abdelnabi Zekry

Professor of the Electronics and Communications Eng. Dept. - Faculty of Engineering - Ain Shams University

Dr. Mohamed Abd Elhamied Abouelatta

Professor assistant of the Electronics and Communications Eng. Dept. - Faculty of Engineering - Ain Shams University

Cairo, 2012

Examiners' Committee

Name: Ayman Ahmed Elsayed Ali Thesis: SDH Multiplexer in Backbone Transmission Networks Degree: Master of Science in Electrical Engineering Title, Name and Affiliation Signature Prof. Talat Abdellatif Elgarf High Technology institute 10th of Ramadan. Electronics and Communications Engineering Dept. **Prof. Wagdy Refaat Anis** Ain Shams University, Faculty of engineering Electronics and Communications Engineering Dept. Prof. Abdelhalim Abdelnabi Zekry Ain Shams University, Faculty of engineering Electronics and Communications Engineering Dept.

Date: 21/05/2012

Curriculum Vitae

Name of Researcher Ayman Ahmed Elsayed ali

Date of Birth 09/05/1976

Place of Birth Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Banha

Faculty of Engineering Banha (BHIT Previous)

Date of Degree June 1999

جامعة عين شمس كلية الهندسة قسم هندسة الالكترونيات والاتصالات الكهربية

تحسين الاداء الوظيفي لمصففات التراتب الرقمي المتزامن في شبكات التراسل الفقريه

ر سالة ماجستيــــر مقدمة من

المهندس/ ايمن احمد السيد على قسم هندسة الالكترونيات والاتصالات كلية الهندسة – جامعة عين شمس

تحت إشراف

ا.د. / عبد الحليم عبد النبى ذكرى أستاذ بقسم هندسة الالكترونيات والاتصالات كلية الهندسة – جامعة عين شمس

د. / محمد عبد الحميد ابوالعطا استاذ مساعد بقسم هندسة الالكترونيات والاتصالات كلية الهندسة – جامعة عين شمس

القاهرة 2012

Abstract

Ayman Ahmed Elsayed Ali, Functionality Improvement of SDH Multiplexer in Backbone Transmission Networks, Master of Science dissertation, Ain Shams University, 2012.

This dissertation presents a study of synchronous digital hierarchy multiplexers as part of backbone transmission networks. The study is presented through the terminal multiplexer with data rate 155 Mbit/s.

Chapter1 begins with an introduction to the different transmission systems, starting from the pulse code modulation (PCM) and the conversion from analog to digital to have digital signal. The conversion process is implemented by different global systems, where the American system uses the μ -Law and the European system uses A-law. The two transmission systems produce the 1.5 Mbit/s for American system and 2.048 Mbit/s for European system in the transmission networks.

Chapter 2 concentrates in the European transmission system which is widely used in the most of countries. A study of the plesiochronous digital hierarchy (PDH) transmission system is introduced in more details, the study indicates the multiplexing process through the PDH system and how it uses **bit by bit** multiplexing with different clock sources. Uses this type of the multiplexing process makes the PDH system limited in the management and the monitoring system, in addition restricted it in the highest bit rates of the multiplexing process, where the highest bit rate in the PDH system is 565 Mbit/s.

Chapter 3 introduces a study of the synchronous transmission system (SDH) is presented in more details, this by understanding the frame structure and the bytes descriptions of the SDH frame. The multiplexing process of the SDH system uses **byte by byte** multiplexing with centralized clock source, this type of the multiplexing process makes the SDH system more advanced in the management and monitoring systems, also the highest bit rates of the multiplexing process reached to 40 Gbit/s. The STM1 frame was taken as example of the PDH signal. Next the deference types of the SDH multiplexers with the connection topologies are introduced.

Chapter 4 illustrates the different types of the SDH multiplexers and the network topology of it.

In chapter 5 a simulation of the terminal multiplexer C based was presented. The simulation indicates the multiplexing process of the terminal multiplexer by combining 63×2.048 Mbit/s to form the 155 Mbit/s (STM-1) frame. In addition, the descriptions of the SOH bytes are discussed. In addition, the measurement tool is

used as Matlab Model and there is compassion between the output of the C model and the matlab output.

Chapter 6 introduces the conclusion of the thesis . In the STM-1 frame for example, there are 41 bytes in the section overhead not used or reserved for future. This is means that there is a bandwidth 1.6% of the total bandwidth not used or 2.64 Mbit/sec wasted. From the study, by using the C programming language and after implementing the model using FPGA , it can help in understanding the available resources of the transmission networks in the telecommunication companies and how it can be used in a professional ways. The model of the STM-1 terminal multiplexer can help in many R&D centres inside our country to develop a new model of the SDH multiplexers with more functions and more features.

Key words: Byte by Byte Multiplexing, Bit by Bit multiplexing, terminal multiplexer, Section Overhead (SOH), Path Overhead (POH), 2 Mbit/s, 155 Mbit/s.

TABLE of Contents

LIST OF FIGURES	
LIST OF TABLE	xi
LIST OF Abbreviations	xii
1 Introduction	1
1.1 Motivation	
1.2 Thesis Review	
2 Transmission Background	3
2.1 Introduction	
2.2 Fundamentals of PCM	3
2.2.1 Quantization	
2.2.2 Quantization and Coding signal	8
2.3 2 Mbit/s (E1) Frame and Signaling Pulse Frame	
2.3.1 The structure of the 2 Mbit/s frame	9
2.3.2 Structure of the Signaling Pulse Frame	_
2.3.3 2 Mbit/s signaling structure	10
2.4 Plesiochronous Digital Hierarchy	12
2.4.1 Principle of PDH multiplexing	
2.4.2 Standard PDH bit rates	
2.4.3 Frame structure of PDH in CEPT	14
2.4.4 PDH multiplexing	
2.4.5 PDH limitations	
3 Synchronous digital hierarchy (SDH)	16
3.1 Introduction	
3.2 SDH Advantages	
3.3 Basic SDH principles	
3.4 General SDH Frame Structure	
3.5 STM-1 frame structure	21
3.5.1 STM1 overhead data	22
3.5.2 STM1 section over head (SOH)	
3.5.3 Virtual Container	32
3.6 SDH MANAGEMENT	45
3.6.1 SDH Management Model	45
3.6.2 Fault Management	46
3.6.3 Performance Management	48

4 SDH MULTIPLEXERS	50
4.1 Introduction	
4.2 Types of SDH multiplexers	
4.2.1 Terminal Multiplexer	
4.2.2 Add/Drop Multiplexer	52
4.2.3 Cross-connect Multiplexer	54
4.3 Network topologies	55
4.3.1 Ring networks	
4.3.2 Double Rings	56
5 The implementation of STM1 Multiplexer	58
5.1 Introduction	
5.2 STM1 terminal multiplexer architecture	
5.3 system architecture	
5.4 System implementation c based	
5.4.1 The Multiplexer model	64
5.4.2 De-multiplexer model	68
5.4.3 The C code of the terminal multiplexer	
5.4.4 The Model test	82
6 Conclusion and future work	86
6.1 Conclusion	
6.2 Future work	
Appendix A	88
Understanding Error Checking Using Parity Bytes	
1 BIP definition	88
2 BIP example	
Appendix B	91
SDH protection	
Appendix C	97
Synchronization in SDH network	
Bibliography	100

List of Figures

2.1	Generation of pulse amplitude	4
2.2	modulation	4
2.2	Pulse code modulation	4
2.3	Uniform quantization	5
2.4	Characteristic of nonlinear amplifier	6
2.5	μ-law companding curve	6
2.6	A-law companding curve	7
2.7	Segment characteristic (A-law)	8
2.8	Conversion code of A-law	
2.9	The FAS and NFAS of E1	9
2.10	THE STRUCTURE OF 2 Mb/s frame	11
2.11	2-Mbit/s-pulse frame and CRC4-multiframe	11
2.12	Multiplexing and De-multiplexing operation	12
2.13	The structure hierarchy of PDH system	13
2.14	The structure of PDH frame	14
2.15	The MUX and DE-MUX in PDH	14
3.1	Mapping different signals in SDH data rates	18
3.2	General SDH frame structure	19
3.3	The SDH frame organization	20
3.4	STM-1 frame organization	. 21
3.5	The structure of transmission path	23
3.6	SOH structure	24
3.7	STM1 overhead data	24
3.8	RSOH format in STM1 frame	. 25
3.9	MOH format	. 26
3.10	Administrative Unit pointer format	28
3.11	AU4 pointer range	28
3.12	AU pointer (H1, H2, H3) coding	29
3.13	Pointer modifications (positive justification)	31
3.14	Pointer modifications (negative justification)	31
3.15	VC4 Carrying payload (63×E1)	32
3.16	High order VC4 POH	33
3.17	Two dimensional representations for C12	37
3.18	Virtual container VC-12 size	37
3.19	Multiframe of the VC12	38
3.20	2.048 Mbit/s mapping	40
3.21	Indication of multiframe by H4	43
3.22	Organization of TU in the VC4	44
3.22		46
	SDH managemnt system model	
3.24	Propagation of OAM signal in SDH system	47

4.1	Reference model for the design of SDH units	
4.2	Terminal multiplexers	
4.3	Functioning of a Terminal Multiplexer	
4.4	Add/Drop Multiplexer	
4.5	Functioning of Add/Drop Multiplexer	
4.6	The Cross-connect Multiplexer	
4.7	Functioning of cross-connect Multiplexer	
4.8	Functioning of cross-connect Multiplexer	
4.9	Single ring topology	
4.10	Double ring topology	
4.11	Line network topology	
5.1	The mapping hierarchy used in STM1 terminal multiplexer	
5.2	System architecture	
5.3	Terminal Multiplexer 63 x 2.048 Mbit/s	
5.4	Multiplexing of VC-4 into STM-1	
5.5	The flowchart of the implemented the terminal multiplexer	
5.6	m file for the test model	.
5.7	The flowchart of the matlab implementation model	
5.8	The difference between the output of the matlab and C models	
A. 1	BIP bytes in the SDH network	
A.2	Example BIP-8 calculation	
A.3	Example BIP-24 calculation	
B.1	1+1protection in SDH	
B.2	1:1 protection in SDH	
B.3	UPSR mechanism	
B.4	BLSR/4	
B.5	Span switching in a BLSR/4	
B.6	Ring switching in a BLSR/4	
B.7	BLSHR/2	
C.2	Block diagram of SEC	
C.3	Synchronizing SSU from SEC	
C.4	Using T0 to synchronize SSU	
C.5	Intra-node architecture example	

List of Tables

2.1	FAS of 2Mb/s	10
2.2	NFAS of 2Mb/s	10
3.1	SDH Hierarchy level	18
3.2	RSOH bytes descriptions	25
3.3	MSOH bytes descriptions	26
3.4	Pointer bytes description	30
3.5	Higher order POH bytes	33
3.6	The description of VC-12 POH bytes	38
3.7	TU12 PNTR bytes description	41
3.8	SDH hierarchy multiplexing	42
5.1	Assumptions of POH bytes	66
5.2	Assumption of the SOH bytes	67

List of Abbreviations

A/D Analog to Digital Converter

ADM Add/Drop Multiplexer

AIS Alarm Indication Signal

ATM Asynchronous Transfer Mode

AU Administrative Unit

BBE Background Blocked Errors

BIP Bit Interleaved Parity

BLSR Bidirectional Line Switched Ring

C-N Container of Order N

CAS Channel Associated Signal

CEPT European Conference of Postal and

Telecommunications Administrations

CRC cyclic redundancy check

D/A Digital to Analog Converter

E1 Digital data signal with bit rate 2.048Mbit/s

FAS Frame Alignment Signal

GSM Global System for Mobile Communications

ITU International Telecommunication Union

MS Multiplex Section

MSOH Multiplex Section Overhead

NFAS Not Frame Alignment Signal

OAM Operation, Administration and Maintenance

PAM Pulse Amplitude Modulation

PCM Pulse Code Modulation

PDH Plesiochronous Digital Hierarchy

PNTR Pointer

POH Path Over Head

PRC primary reference clock

PTE Path Termination Element

RDI Remote Defect Indication

REG Regenerator

SAN Storage Area Network

SDH Synchronous Digital Hierarchy

SEC Synchronous Equipment Timing Clock

SEMF Synchronous Equipment Management Function

SNCP Subnetwork Connection Protection

SNR The Signal to Noise Ratio

SOH Section Over Head

SONET Synchronous Optical Network

STM-1 Synchronous Transport Module Level-1

TU Tributary Unit

UPSR Unidirectional Path Switched Ring

USA United States of America

VC Virtual Container

Chapter 1 Introduction

1.1 Thesis motivation

Due to the competitions between the telecommunication service providers, the required capacities are increasing all the time. It is important for these providers to develop a network that can transfer more data bytes from one place to another. In addition, The GSM traffic and the internet services need more capacities in the telecommunication networks. Therefore, it is mandatory for the networks to handle large amounts of data in a fast and a reliable ways. Of course, one possibility would be Ethernet traffic, but in cellular transmission networks there are a strict requirements for delay, data loss and synchronization and this is why the Ethernet is not yet supported.

The Synchronous Digital Hierarchy (SDH) is one answer for increasing the network data traffic. For example if we need to transfer 63×2.048 Mb/s (E1) signals from one place to another a huge amount of wires will be needed, on the other hand the SDH needs only two fibers to do the same operation. Many vendors have a product called STM1 multiplexer and its functionality to add and drop 63×2.048 Mbit/s into 155.52 Mbit/s (STM-1).

The bit rates of the basic signals in the SDH are derived from the same clock source, which means that the SDH is completely synchronous transmission system. SDH has many different hierarchy levels starting from 155.52 Mbit/s to 10 Gbit/s and the STM-1 with a bit rate of 155.52 Mbit/s is the basic module of the SDH system. The SDH signal is terminated to E1 (2.048 Mbit/s) signals by using terminal multiplexer.

Before the SDH multiplexer operates in the telecommunication market, there is a huge amount of work to put the requirements specifications, by studying the reality of the market needs. Many chip manufacturers have SDH chips in their product catalog, so one has to make a decision which manufacturer's chip to use. In addition, one must decide how to handle overhead bytes and how to implement all this in network manager software. After all these decisions, we have a huge amount of data and the last thing to do is to decide which features are implemented and which are not. Because of time-to-market pressures, the implementation has to be phased and the first phase must contain only the necessary functionality and nothing more to reduce the development time to minimum.

The Synchronous Digital Hierarchy (SDH) multiplexers form the core part of the backbone telecommunication networks, and the effective design, reliability analysis and training are essential to managing SDH network effectively.

This thesis studies an implementation design of the SDH multiplexer by C programming language. The design is implemented according to International Telecommunication Union (ITU-T) standards. It doesn't cover all aspects of the wide range of the SDH adaptations.

1.2 Thesis Overview

This thesis is organized in six chapters. Chapter 2 introduces the existing transmission systems. It includes an overview of pulse code modulation (PCM), 2.048 Mbit/s frame and plesiochronous digital hierarchy (PDH) transmission system.

Chapter 3 presents a full description of the synchronous digital hierarchy (SDH) transmission system; it shows the advantages of the SDH, general frame structure of the SDH and the STM1 frame format.

The different types of the SDH multiplexers and the networks topology are described in chapter 4. In addition, it contains a brief description of the management system.

Chapter 5 presents an implementated model of SDH terminal multiplexer by using C programming language with a flowchart of the C code and the tests of the model are explained at the end of the chapter.

Chapter 6 provides the conclusion and the future work.