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Summary:

The present work addresses modeling of the dynamics of heat and mass transfer in the
regeneration of adsorptive particle beds focusing on the drying and cooling phase where hot
air is first admitted for moisture removal and cold air is introduced to bring about the required
bed cooling. Three schemes are studied for the air temperature policy adopted in this drying-
cooling phase.

The first part of the work presents the development of a lumped parameter dynamic model
to describe the evolution of temperature and moisture content within fluidized beds. This is
followed by mimicking the behavior of a fixed bed by partitioning the bed into small lumped
parameter increments to model its distributed parameter behavior.

The third part addresses the effect of intra-particle mass diffusion resistance. The results
cover models for constant rate drying and their comparison with the falling rate behavior when
the intra-particle mass transfer resistance is considered.
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Abstract

Drying is an important process in many fields such as chemical, agricultural,
ceramics and pharmaceutical industries. It may be done to have free-flowing solids that
are easy to handle, to facilitate the preservation and storage of different materials, to
reduce the transportation costs or to achieve desired quality of products.

One of the industrial drying applications is the regeneration of adsorptive particle
beds. The operation of such beds includes three periods. During the first period
adsorption takes place till breakthrough. This is followed by steaming period where live
steam is blown through the bed to remove the adsorbate from the solid adsorbent. In the
third period; regeneration period, the hot, moist bed is dried and cooled to be ready for
the next adsorption cycle.

The present work addresses modeling of the dynamics of heat and mass transfer in
the regeneration of adsorptive particle beds focusing on the drying and cooling phase
where hot air is first admitted for moisture removal and cold air is introduced to bring
about the required bed cooling. Three schemes will be studied for the air temperature
policy adopted in this drying-cooling phase. These include idealized (square) and more
realistic (saw-tooth like) heat pulses.

The first part of the work presents the development of a lumped parameter dynamic
model to describe the evolution of temperature and moisture content within fluidized
beds, taking into consideration the conservation of mass and heat within the bed as well
as the variation of the system physico-chemical parameters with changes of temperature
and moisture content. This is followed by mimicking the behavior of a fixed bed by
partitioning the bed into small lumped parameter increments to model its distributed
parameter behavior.

The third part addresses the effect of intra-particle mass diffusion resistance by
considering the difference in behavior on neglecting intra-particle diffusion and when a
suitable value of the Knudsen diffusion coefficient is assigned to the particle moisture
content.

The results cover models for constant rate drying and their comparison with the
falling rate behavior when the intra-particle mass transfer resistance is considered.



Chapter 1 : Introduction

Drying is a simultaneous mass and heat transfer process that converts a liquid, solid
or semi-solid feedstock into a solid product having lower moisture content. This is
usually done by applying heat to evaporate the liquid into a vapor phase [1].

As drying must involve a phase change of the liquid to be removed, it is considered
as one of the most energy-intensive unit operations. This is due to the high latent heat of
vaporization, as well as, the inefficiency of using hot air as the most common drying
medium. Hence, the operating cost of dryers represents their major cost item [2].

Regeneration of adsorptive beds is an important drying application. The operation
of such beds includes three periods. During the first period adsorption takes place till
breakthrough. This is followed by steaming period where live steam is blown through
the bed to remove the adsorbate from the solid desiccant. In the third period; regeneration
period, the hot, moist bed is dried and cooled to be ready for the next adsorption cycle.

This study concentrates on the regeneration period, where hot air is first admitted for
moisture removal. Then cold air is supplied for bed cooling.

Chapter 2 provides a detailed literature review of the previous studies dealing with
modeling of heat and mass transfer in drying processes.

Chapter 3 summarizes the points that will be covered by the proposed dynamic
models.

Chapter 4 details the development of the models used to simulate the regeneration
of hot moist adsorption beds outlining the major assumptions that have been applied.
This is followed by outlining the solution algorithm adopted for the simulation of
alternative boundary conditions.

Chapter 5 presents the results of dynamic behavior both for fluidized beds and for
fixed beds of adsorbent and the comparison of the obtained results when constant drying
rate is assumed and when falling rate behavior is taken into account by considering the
intra-particle mass transfer resistance.

Chapter 6 summarizes the conclusion of this work along with recommendations for
future work.



