

REGENERATION DYNAMICS OF STEAMED OUT ADSORPTIVE BEDS

By

Nourhan Hisham Mohamed Rabea Khashaba

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

REGENERATION DYNAMICS OF STEAMED OUT ADSORPTIVE BEDS

By Nourhan Hisham Mohamed Rabea Khashaba

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. Dr. Mahmoud El-Rifai	Prof. Dr. Reem Sayed Ettouney
Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering, Cairo University	Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering, Cairo University
Dr. Ahmed Fa	yez Nassar
Assistant Pr	rofessor
Chemical Engineer	ing Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Faculty of Engineering, Cairo University

REGENERATION DYNAMICS OF STEAMED OUT ADSORPTIVE BEDS

By Nourhan Hisham Mohamed Rabea Khashaba

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the
Examining Committee
Prof. Dr. Mahmoud Abdel Hakim El-Rifai, Thesis Main Advisor
Prof. Dr. Reem Sayed Ettouney, Member
1101. Dr. Reem Sayea Ettouney, Wember
Prof. Dr. Mai Mohamed Kamal El Din Fouad, Internal Examiner
Prof. Dr. Abdel Ghani Mohamed Gamal Abou El Nour, External Examiner
Professor at National Research Center, Egypt.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Nourhan Hisham Mohamed Rabea Khashaba

Date of Birth: 20 / 01 / 1992 **Nationality:** Egyptian

E-mail: nourhanhisham@gmail.com

Phone: 002 0106 44 67 219

Address: 18th Al-Asherini Street, Faisal, Giza.

Registration Date: 01/10/2013

Awarding Date: 2016

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Dr. Mahmoud Abdel Hakim El-Rifai

Prof. Dr. Reem Sayed Ettouney

Dr. Ahmed Fayez Nassar

Examiners:

Prof. Dr. Mahmoud Abdel Hakim El-Rifai (Thesis main advisor) Prof. Dr. Reem Sayed Ettouney (Member)

Prof. Dr. Mai Mohamed Kamal El Din Fouad (Internal examiner) Prof. Dr. Abdel Ghani M. G. Abou El Nour (External examiner)

Professor at National Research Center, Egypt.

Thesis Title:

REGENERATION DYNAMICS OF STEAMED OUT ADSORPTIVE BEDS

Key Words:

Particle drying; fixed beds; fluidized beds; modeling.

Summary:

The present work addresses modeling of the dynamics of heat and mass transfer in the regeneration of adsorptive particle beds focusing on the drying and cooling phase where hot air is first admitted for moisture removal and cold air is introduced to bring about the required bed cooling. Three schemes are studied for the air temperature policy adopted in this drying-cooling phase.

The first part of the work presents the development of a lumped parameter dynamic model to describe the evolution of temperature and moisture content within fluidized beds. This is followed by mimicking the behavior of a fixed bed by partitioning the bed into small lumped parameter increments to model its distributed parameter behavior.

The third part addresses the effect of intra-particle mass diffusion resistance. The results cover models for constant rate drying and their comparison with the falling rate behavior when the intra-particle mass transfer resistance is considered.

Acknowledgments

Though only my name appears on the cover of this thesis, a great many people have contributed to its production. I owe my gratitude to all those people who have made this work possible.

I would first like to thank Prof. Dr. Mahmoud El-Rifai for proposing the topic of this work, his office door was always open whenever I ran into a trouble spot or had a question about my research or writing.

I am grateful to Prof. Dr. Reem Ettouney for her continuous guidance and follow up, and for her endless support and motivation. She believed in me more than I believed in myself and she was always there for help whenever I needed. I learnt a lot from her on both technical and personal sides.

I appreciate Dr. Ahmed Fayez help to start the thesis work and his care, even when he was travelling abroad. He is one of the most caring persons and hard workers I have ever dealt with.

Also, I would like to thank all my professors and colleagues in the Chemical Engineering Department for their continuous encouragement.

Finally, I must express my very profound gratitude to my parents and to my sisters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. They are the heroes behind every achievement in my life. Thank you.

Dedication

This thesis is dedicated to my family.

Table of Contents

ACKNOWLE	EDGMENTS	I
DEDICATIO	N	II
TABLE OF C	ONTENTS	III
LIST OF TAE	BLES	V
LIST OF FIG	URES	VI
	TURE	
CHAPTER 1	: INTRODUCTION	1
CHAPTER 2	: LITERATURE REVIEW	2
2.1.	MECHANISM OF DRYING	2
2.2.	CLASSIFICATION OF DRYERS	
2.2.1.	Fixed Bed Drying	
2.2.2.	Fluidized Bed Drying	
2.2.3.	Spouted Bed Drying	
2.3.	DRYING MODELS	
2.3.1.	Classification based on the purpose of calculation	
2.3.2.	Classification based on the level of complexity	
2.3.3.	Single Particle Models	
2.3.4.	Fixed Bed Dryer Models	
2.3.5.	Fluidized Bed Dryer Models	
2.3.6.	Spouted Bed Dryer Models	
2.4.	ESTIMATION OF HEAT AND MASS TRANSFER COEFFICIENTS	
2.4.1.	Experimental Correlations	
2.4.2.	Correlations using J-Factor	
CHAPTER 3	: STATEMENT OF THE PROBLEM	21
CHAPTER 4	MODEL DEVELOPMENT	23
4.1.	Lumped Parameter Model	23
4.1.1.	Model Assumptions	23
4.1.2.	Model Equations	
4.1.2.1.	Mass and Energy Balances on Solids	
4.1.2.2.	Mass and Energy Balances on Air	
4.1.3.	Heating Policies	
4.1.4.	Physical Properties	
4.1.4.1. 4.1.4.2.	Physical and Transfer Parameters Operating Conditions	
4.1.4.2.	SOLUTION ALGORITHM	
4.3.	FIXED BED MODEL	
4.3. 4.4	FEFECTIVE MASS TRANSFER COFFEIGENT	28

4.5.	CRITERIA FOR CHOOSING THE OPTIMUM SWITCHING TIME	30
CHAPTER 5	: RESULTS AND DISCUSSION	31
5.1.	RESULTS OF LUMPED PARAMETER MODEL	31
5.1.1.	Scheme A Results	31
5.1.2.	Scheme B Results	
5.1.3.	Scheme C Results	36
5.2.	EFFECT OF BED PARTITIONING	38
5.3.	FIXED BED RESULTS	43
5.4.	EFFECT OF SWITCHING TIME	51
5.5.	EFFECT OF DIFFUSION RESISTANCE	54
5.5.1.	Fluidized Bed	54
5.5.2.	Fixed Bed	58
CHAPTER 6	: CONCLUSIONS AND RECOMMENDATIONS	61
REFERENC	ES	62
APPENDIX A	A: ORTHOGONAL COLLOCATION METHOD FOR THE	
SOLUTION	OF DIFFERENTIAL EQUATIONS	65
APPENDIX 1	B: MATLAB CODE FOR FLUIDIZED BED	71

List of Tables

Table 2.1: Classification of Dryers	4
Table 2.2: Comparison of features of available models for dryers	
Table 4.1: Physical and transfer parameters	
Table 5.1: The optimum conditions of different schemes for fluidized bed	
Table 5.2: The optimum conditions of different schemes for fixed bed	54

List of Figures

Figure 2.1: Heat and mass transfer mechanisms in drying processes	2
Figure 2.2: Drying rate as a function of moisture content	
Figure 2.3: Drying rate as a function of time	
Figure 2.4: Schematic diagram for fixed bed, fluidized bed and spouted bed	5
Figure 2.5: Inlet and outlet temperatures during typical solid desiccant bed regenerate	tion
period of natural gas dehydrator	
Figure 2.6: Fluidization regimes	
Figure 2.7: Geldart's fluidization classification	
Figure 2.8: Schematic diagram of a spouted bed. Arrows indicated the direction of s	
movement	
Figure 2.9: Flow regime map for wheat particles ($d_p = 3.2 \text{ x } 6.4 \text{ mm}$, $D_c = 15.2 \text{ cm}$, $l_{1.25}$	
1.25 cm)	
Figure 3.1: Flow diagram of a semi-continuous adsorption battery	
Figure 4.1: Solution algorithm for model equations	
Figure 5.1: Variation of inlet air temperature with time, Scheme A.	
Figure 5.2: Variation of solids moisture content and temperature with time, Scheme	
Figure 5.3: Variation of air humidity and temperature with time, Scheme A	
Figure 5.4: Variation of inlet air temperature with time, Scheme B	
Figure 5.5: Variation of solids moisture content and temperature with time, Scheme	
Figure 5.6: Variation of air humidity and temperature with time, Scheme B	
Figure 5.7: Variation of inlet air temperature with time, Scheme C.	
Figure 5.8: Variation of solids moisture content and temperature with time, Scheme	
Figure 5.9: Variation of air humidity and temperature with time, Scheme C	37
Figure 5.11: Variation of different parameters with time for 10 sections, tswitch=19	
minutes, Scheme C	
Figure 5.14: Variation of solids temperature with time, for some sections, tswitch=1	
minutes, Scheme C	44
Figure 5.15: Variation of outlet air temperature with time, for some sections,	
tswitch=19 minutes, Scheme C	
Figure 5.16: Variation of outlet air humidity with time, for some sections, tswitch=1	
minutes, Scheme C	
Figure 5.17: Variation of solids moisture content with bed volume at different times	
fixed bed at tswitch=19 minutes, Scheme C	
Figure 5.18: Variation of solids moisture content and temperature with bed volume a zero min, for fixed bed at tswitch=19 minutes, Scheme C	
Figure 5.19: Variation of solids moisture content and temperature with bed volume a	
minutes, for fixed bed at tswitch=19 minutes, Scheme C	
Figure 5.20: Variation of solids moisture content and temperature with bed volume a	
10 minutes, for fixed bed at tswitch=19 minutes, Scheme C	
Figure 5.21: Variation of solids moisture content and temperature with bed volume a	
15 minutes, for fixed bed at tswitch=19 minutes, Scheme C	
Figure 5.22: Variation of solids moisture content and temperature with bed volume a	
19 minutes, for fixed bed at tswitch=19 minutes, Scheme C	

Figure 5.23: Variation of solids moisture content and temperature with bed volume at
25 minutes, for fixed bed at tswitch=19 minutes, Scheme C
Figure 5.24: Variation of solids moisture content and temperature with bed volume at
30 minutes, for fixed bed at tswitch=19 minutes, Scheme C50
Figure 5.25: Variation of solids moisture content and temperature with bed volume at
35 minutes, for fixed bed at tswitch=19 minutes, Scheme C
Figure 5.26: Variation of solids moisture content and temperature with bed volume at
38 minutes, for fixed bed at tswitch=19 minutes, Scheme C
Figure 5.27: Variation of solids moisture content with time, for bed 50 at different
switching times, Scheme C
Figure 5.28: Variation of solids temperature with time, for bed 50 at different switching
times, Scheme C
Figure 5.29: Variation of cycle time with switching time, Scheme C53
Figure 5.30: Variation of cycle time with switching time, Scheme A53
Figure 5.31: Variation of cycle time with switching time, Scheme B54
Figure 5.32: Variation of inlet air temperature with time, Scheme C55
Figure 5.33: Variation of solids moisture content and temperature with time, Scheme C
with diffusion resistance55
Figure 5.34: Variation of wet radius with time, Scheme C
Figure 5.35: Variation of air humidity and temperature with time, Scheme C with
diffusion resistance
Figure 5.36: Variation of solids moisture content and temperature with time, at
switching time 28 min, with and without diffusion resistance57
Figure 5.37: Variation of solids moisture content and temperature with time, for bed 50
at switching time 26.5 min, Scheme C with and without diffusion resistance58
Figure 5.38: Variation of solids moisture content and temperature with time, for bed 50
at switching time 27.5 min, Scheme C with and without diffusion resistance59
Figure 5.39: Variation of solids moisture content and temperature with time, for bed 50
at switching time 35 min, Scheme C with and without diffusion resistance59
Figure 5.40: Variation of cycle time with switching time, Scheme C with diffusion
resistance 60

Nomenclature

c	Heat capacity	cal gm ⁻¹ K ⁻¹
G	Dry air mass flow rate	gm sec ⁻¹
D	Knudsen diffusion coefficient	cm ² sec ⁻¹
hg	Heat transfer coefficient in the gas phase	cal sec ⁻¹ cm ⁻² K ⁻¹
Н	Air enthalpy	cal gm dry air-1
Hg	Dry gas hold up in the bed	gm
K	Thermal conductivity	cal sec ⁻¹ cm ⁻¹ K ⁻¹
Kg	Mass transfer coefficient in the gas phase	gm sec ⁻¹ cm ⁻² mmHg ⁻¹
$M_{\rm v}$	Molecular weight of water vapor	gm gmole ⁻¹
p	Partial pressure of water vapor	mmHg
r	Particle radius coordinate	cm
R_p	Particle radius	cm
S	Weight of solids in the bed	gm
T	Particle temperature	°C
T_1	Particle temperature at interior collocation point	°C
t	Time	sec
\bar{t}	Switching time	min
W	Air humidity ratio	gm water/ gm dry air
X	Particle moisture content on dry basis	gm water/ gm dry solid

Greek letters:

α	Specific area of charcoal	$cm^2 gm^{-1}$
ε	Bed porosity	
λ	Latent heat of vaporization	cal gm ⁻¹
θ	Air temperature	$^{\circ}\mathrm{C}$
ρ	Density	gm cm ⁻³
σ	Dried increment of the particle	cm
τ	Heater time constant	min
τ_{p}	Tortuosity factor, has a value of 4	
ω	Dimensionless radius, r/R	

Subscripts:

a	ambient
f	feed
g	gas
i	interface

outlet o particle p r reference dry solid sd wet solid sw transient t ultimate u water W

Abstract

Drying is an important process in many fields such as chemical, agricultural, ceramics and pharmaceutical industries. It may be done to have free-flowing solids that are easy to handle, to facilitate the preservation and storage of different materials, to reduce the transportation costs or to achieve desired quality of products.

One of the industrial drying applications is the regeneration of adsorptive particle beds. The operation of such beds includes three periods. During the first period adsorption takes place till breakthrough. This is followed by steaming period where live steam is blown through the bed to remove the adsorbate from the solid adsorbent. In the third period; regeneration period, the hot, moist bed is dried and cooled to be ready for the next adsorption cycle.

The present work addresses modeling of the dynamics of heat and mass transfer in the regeneration of adsorptive particle beds focusing on the drying and cooling phase where hot air is first admitted for moisture removal and cold air is introduced to bring about the required bed cooling. Three schemes will be studied for the air temperature policy adopted in this drying-cooling phase. These include idealized (square) and more realistic (saw-tooth like) heat pulses.

The first part of the work presents the development of a lumped parameter dynamic model to describe the evolution of temperature and moisture content within fluidized beds, taking into consideration the conservation of mass and heat within the bed as well as the variation of the system physico-chemical parameters with changes of temperature and moisture content. This is followed by mimicking the behavior of a fixed bed by partitioning the bed into small lumped parameter increments to model its distributed parameter behavior.

The third part addresses the effect of intra-particle mass diffusion resistance by considering the difference in behavior on neglecting intra-particle diffusion and when a suitable value of the Knudsen diffusion coefficient is assigned to the particle moisture content.

The results cover models for constant rate drying and their comparison with the falling rate behavior when the intra-particle mass transfer resistance is considered.

Chapter 1: Introduction

Drying is a simultaneous mass and heat transfer process that converts a liquid, solid or semi-solid feedstock into a solid product having lower moisture content. This is usually done by applying heat to evaporate the liquid into a vapor phase [1].

As drying must involve a phase change of the liquid to be removed, it is considered as one of the most energy-intensive unit operations. This is due to the high latent heat of vaporization, as well as, the inefficiency of using hot air as the most common drying medium. Hence, the operating cost of dryers represents their major cost item [2].

Regeneration of adsorptive beds is an important drying application. The operation of such beds includes three periods. During the first period adsorption takes place till breakthrough. This is followed by steaming period where live steam is blown through the bed to remove the adsorbate from the solid desiccant. In the third period; regeneration period, the hot, moist bed is dried and cooled to be ready for the next adsorption cycle.

This study concentrates on the regeneration period, where hot air is first admitted for moisture removal. Then cold air is supplied for bed cooling.

Chapter 2 provides a detailed literature review of the previous studies dealing with modeling of heat and mass transfer in drying processes.

Chapter 3 summarizes the points that will be covered by the proposed dynamic models.

Chapter 4 details the development of the models used to simulate the regeneration of hot moist adsorption beds outlining the major assumptions that have been applied. This is followed by outlining the solution algorithm adopted for the simulation of alternative boundary conditions.

Chapter 5 presents the results of dynamic behavior both for fluidized beds and for fixed beds of adsorbent and the comparison of the obtained results when constant drying rate is assumed and when falling rate behavior is taken into account by considering the intra-particle mass transfer resistance.

Chapter 6 summarizes the conclusion of this work along with recommendations for future work.