

Ain Shams University Faculty of Engineering Department of Electric Power and Machines

Electric Field Calculation around a Stressed Wire Coaxial With a Grounded Mesh Cylinder

A thesis submitted in partial of fulfillment of requirement of the M. Sc. in Electrical Power Engineering

By

Eng. May Mohamed Ali

B.Sc in Electrical Power Engineering, 2006 Faculty of Engineering Assuit University

Supervised by

Prof. Dr. Soliman M. El-Debeiky

Department of Electric Power and Machines Faculty of Engineering, Ain Shams University

Prof. Dr. Mazen M. Abdel-Salam

Department of Electrical Engineering Faculty of Engineering, Assiut University

Prof. Dr. Salem M. El-Khodary

Department of Electric Power and Machines Faculty of Engineering, Ain Shams University

Cairo 2013

Ain Shams University Faculty of Engineering Department of Electric Power and Machines

Electric Field Calculation around a Stressed Wire Coaxial With a Grounded Mesh Cylinder

A thesis submitted in partial of fulfillment of requirement of the M. Sc. in Electrical Power Engineering

Bv

Eng. May Mohamed Ali

B.Sc in Electrical Power Engineering, 2006 Faculty of Engineering Assuit University

Supervisors Committee

Prof. Dr. Soliman M. El-Debeiky	
Department of Electric Power and Machines	()
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mazen M. Abdel-Salam	
Department of Electrical Engineering	()
Faculty of Engineering, Assiut University	
Prof. Dr. Salem M. El-Khodary	
Department of Electric Power and Machines	()
Faculty of Engineering, Ain Shams University	

Ain Shams University Faculty of Engineering Department of Electric Power and Machines

Electric Field Calculation around a Stressed Wire Coaxial With a Grounded Mesh Cylinder

A thesis submitted in partial of fulfillment of requirement of the M. Sc. in Electrical Power Engineering

By

Eng. May Mohamed Ali

B.Sc in Electrical Power Engineering, 2006 Faculty of Engineering Assuit University

Examiners Committee

Prof. Dr. Loaay Saad El-Deen Nasrat	
Department of Electrical Engineering Engulty of Engineering Asyan University	()
Faculty of Engineering, Aswan University	
Prof. Dr. Hanafy Mahmoud Ismail	
Department of Electric Power and Machines	()
Faculty of Engineering, Ain Shams University	
Prof. Dr. Soliman M. El-Debeiky	
Department of Electric Power and Machines	()
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mazen M. Abdel-Salam	
Department of Electrical Engineering	()
Faculty of Engineering Assiut University	

Date: 28 / 12 / 2013

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of

the requirement for the M. Sc. degree in Electrical Engineering. The

included work in this thesis has been carried-out by the author at the

Electric Power and Machines Department of Ain Shams University and

the Electrical Engineering Department of Assiut University. No part of

thesis has been submitted for a degree or a qualification at other

University or institute.

Name: May Mohamed Ali

Signature:

Date: 28 / 12 / 2013

RESEARCHER DATA

Name: May Mohamed Ali
Date of birth: 2-5-1983
Place of birth: Cairo, Egypt
Academic Degree: B. Sc. In Electrical Power Engineering
University issued degree: Assuit University
Date of degree: 2006
Previous experiences:
Electrical Design Engineer
Project Manager
• Lead Auditor for ISO-9001
Egyptian Engineers Association
Current job:
• Free.
Signature:
Date: 28 / 12 / 2013

ACKNOWLEDGEMENTS

All praise is to *ALLAH* who helped me to complete this thesis.

I wish to express my grateful to *Prof. Dr. Soliman M. El-Debeiky*, *Prof. Dr. Mazen M. Abdel-Salam and Prof. Dr Salem M. El-Khodary* for the great help, valuable information and guidance they represented to me.

I would like deeply to thank *Prof. Dr. Adel Abdo Hussen*, *Dr. Hassan Wadaa*, *Dr. Hamdy Ziedan* and Assiut University staff for their kind help during my stay at the E.E. Department of Assuit University, Assiut.

Finally, A great appreciation and respect to my *All Family* for their kind supporting.

Author,,,, May Mohamed Ali December, 2013

LIST OF CONTENTS

LIST OF	CONTENTS
	FIGURESV
	TABLESVIII
	SYMBOLS AND ABBRIVIATION IX
ABSTRA	ACTXI
CHAPTI	ER 11
INTROL	OUCTION
1.1	Aim of Present Work
1.2	Thesis Outlines
C	hapter One is titled "Introduction"
C	hapter Two is titled "Review of literature"
C	hapter Three is titled "Electric field computation methods"3
	napter Four is titled "analysis of electric field in wire-cylinder nfigurations"
	napter Five is titled "Onset voltage of corona in wire-cylinder nfigurations"
C	hapter Six is titled "Experimental setup and technique"4
C	hapter Seven is titled "Results and discussion"4
C	hapter Eight is titled "Conclusions and suggestions for future work"5
CHAPTI	ER 26
LITERA	TURE REVIEW
2.1 I	ntroduction6
2.2	Meshed Electrodes Configurations
2	2.1 Parallel meshed plate's configuration
2	2.2 Pin-meshed plate configuration
2	2.3 Curved meshed electrodes

2.3	Solid e	electrode Configurations
CHAP	TER 3	15
ELEC"	TRIC FI	ELD COMPUTATION METHODS
3.1	Introd	uction15
3.2	Domai	in Methods16
	3.2.1	Finite Difference Method
	3.2.2	Finite Element Method
3.3	Integra	ation Methods24
	3.3.1	Charge Simulation Method (CSM)25
	3.3.2	Surface Charge Simulation Method (SCSM)
	3.3.3	Boundary Element Method (BEM)30
3.4	Monte	Carlo Method
CHAP	TER 4	38
	YSIS O	F ELECTRIC FIELD IN WIRE-CYLINDER TIONS
4.1	Investi	gated Geometries
4.2	Wire -	Solid Cylinder Configuration
	4.2.1	Selection of Simulation Charges
	4.2.2	Boundary Conditions
	4.2.3	Selection of Boundary Points40
	4.2.4	Selection of Check Points41
	4.2.5	Formulation of Potential Coefficient Matrix41
	4.2.6	Determining of Unknown Simulation Charges42
	4.2.7	Field Calculations
4.3	Wire -	Meshed Cylinder Configuration
	4.3.1	Selection of Simulation Charges
	4.3.2	Boundary Conditions

	4.3.3	Selection of Boundary Points	47
	4.3.4	Selection of Check Points	47
	4.3.5	Formulation of Potential Coefficient Matrix	48
	4.3.6	Determining of Unknown Simulation Charges	49
	4.3.7	Field Calculations	56
CHAP	TER 5		52
ONSE	T VOL	TAGE OF CORONA IN WIRE-CYLINDER CONFIGURATION	N
5.1	Introd	uction5	2
5.2	Coron	a onset voltage5	52
	5.2.1	Calculation of Geometry Factor g(x)	55
	5.2.2	Discharge physical parameters	55
5.3	Empir	ical formulae for onset voltage	57
CHAP	TER 6		50
EXPE	RIMEN	TAL SETUP AND TECHNIQUE	
6.1	Introd	uction	59
6.2	Experi	mental set-up	59
6.3	Experi	mental Technique	52
СНАР	TER 7		54
RESU	LTS AN	ID DISCUSSION	
7.1	Introd	uctione	54
7.2	Accur	acy of Charge Simulation Technique	54
7.3	Experi	mental Set-Up Current Errors6	57
7.4	Electri	c Field Calculations6	57
	7.4.1	Radial electric field	67
	7.4.2	Surface Electric Field along Wire Length	69
	7.4.3	Wire Meshed Cylinder Electric Field	69

	Calculated Corona Onset Voltages Against Those Measured erimentally	70
7.6	The Current-Voltage Characteristic	71
CHAP	TER 8	78
CONC	CLUSION AND SUGGESTIONS FOR FUTURE WORK	
8.1	Conclusions.	78
8.2	Suggestions for Future Work.	79
REFE	RENCES	81
APPE	NDIX 1	86
APPE	NDIX 2	90
APPE	NDIX 3	95

LIST OF FIGURES

CHAPTER TWO : LITERATURE REVIEW	
Figure 2-1: Corona Discharge Cell Configuration.	6
Figure 2-2: Experimental apparatus.	8
Figure 2-3: Schematic illustration of the preparation of the electrostatic flocking electrode.	9
Figure 2-4: Discrete simulation charges and boundary points of the stressed needle.	10
Figure 2-5: Schematic diagram of the experimental set-up.	11
Figure 2-6: Corona current–voltage characteristics for thin needle at gap spacing H of 1 and 2 cm with meshed and flat plates.	12
Figure 2-7: Difference of potential to cause continuous glow, as Function of radius of wire. For cylinder of 4.45 cm. diameter and 25 cm. long.	14
CHAPTER THREE: ELECTRIC FIELD COMPUTATION METHOD	S
Figure 3-1: Regular grid for finite difference technique, indicating the node numbers.	16
Figure 3-2: Grid for finite element technique, arrangement of the elements.	19
Figure 3-3: Cylindrical element	29
Figure 3-4: A flat quadrangular element.	32
Figure 3-5: Representation of the possible random movement paths for reaching from the proposed point (r0) to one of the boundary surfaces (Si).	35
CHAPTER FOUR: ANALYSIS OF ELECTRIC FIELD IN CYLINDER CONFIGURATIONS	WIRE
Figure 4-1: A stressed wire surrounded by grounded outer (a) solid cylinder and (b) meshed cylinder	38

Figure 4-2: (a) Wire-solid cylinder configuration. (b) Simulation charges arrangement	40
Figure 4-3: Boundary and check points for wire-solid cylinder	41
Figure 4-4: Flow chart of electric field calculation procedure for wire- solid cylinder configuration	45
Figure 4-5: (a) Wire-meshed cylinder configuration. (b) Simulation charges arrangement	46
Figure 4-6: Boundary & check points for wire-meshed outer cylinder	48
Figure 4-7: Flow chart of electric field calculation procedure for wire- meshed cylinder configuration	51
CHAPTER FIVE: ONSET VOLTAGE OF CORONA IN WIRE-CYLII CONFIGURATIONS	NDEF
Figure 5-1: Development of an electron avalanche in the vicinity of the negatively stressed wire.	53
Figure 5-2: Diagram for the propagation of photons in the ionization zone in the radial and axial directions from an arbitrary location of an ionization event along the route of the avalanche.	56
CHAPTER SIX: ONSET VOLTAGE OF CORONA IN WIRE-CYLII CONFIGURATIONS	NDEF
Figure 6-1: Schematic diagram of the experimental set-up with micro-ammeter connection for corona current measurement.	59
Figure 6-2: HV transformer and rectifier circuit with smoothing capacitor.	60
Figure 6-3: The coaxial configuration with outer mesh cylinder	61
Figure 6-4: The coaxial configuration with outer solid cylinder	61

Figure 6-5: The coaxial configuration with outer mesh cylinder and 1mm wire diameter	62
CHAPTER SEVEN: RESULTS AND DISCUSSION	
Figure 7-1: The current-voltage characteristic of the experimental set-up with and without discharge wire (R_{in} =0.0015m, R_o = 0.12m, L=1m, L_w =1.5m and R_m =0.0005m)	71
Figure 7-2: Radial electric field at the middle of wire-solid cylinder and wire-meshed cylinder configurations as influenced by cylinder length (wire length L_w =cylinder length L) (R_{in} =0.0015m, R_o =0.12m, R_m =0.0005m, mesh size=0.02x0.02m)	72
Figure 7-3: Radial electric field at the middle of wire-solid cylinder and wire-meshed cylinder configuration as influenced by wire radius (R_o =0.12 m, L_w =0.1 m, L =0.1 m, R_m =0.0005m, mesh size=0.02x0.02m)	73
Figure 7-4: Surface electric field along the wire length as influenced by wire length $L_{\rm w}$ in wire-solid cylinder configuration ($R_{\rm in}$ =0.0015 m, $R_{\rm o}$ =0.12 m, L=0.5 m)	74
Figure 7-5: Surface electric field along the wire length as influenced by wire length $L_{\rm w}$ in wire-meshed cylinder configuration ($R_{\rm in}$ =0.0015m, $R_{\rm o}$ =0.12m, $R_{\rm m}$ =0.0005m, L=0.5m, mesh size=0.02x0.02m)	75
Figure 7-6: Radial electric field at the middle of wire-meshed cylinder configuration as influenced by mesh size $(R_{in}\text{=}0.0015~m,~R_{m}\text{=}0.0005m,~L_{w}\text{=}~0.1~m,~R_{o}\text{=}0.12~m,~L\text{=}0.1~m)$	76
Figure 7-7: Corona current-voltage characteristic for different wire radius in meshed and solid cylinders (L_w =1m, R_o =0.12m, L =1m, R_m =0.0005m, mesh size=0.02x0.02m)	77

LIST OF TABLES

CHAPTER TWO : LITERATURE REVIEW	
Table 2-1: Corona onset voltage versus the gap spacing for thin and thick needles with meshed and flat plates.	12
CHAPTER FIVE : ONSET VOLTAGE OF CORONA IN WIRE- CYLINDER CONFIGURATIONS	
Table 5-1: Experimentally determined constants \pm A and \pm B used in the empirical relation (5-15).	58
CHAPTER SEVEN : RESULTS AND DISCUSSION	
Table 7-1: Potential Error for Different Configurations (Length $L = L_w$).	66
Table 7-2: Potential Error for Different configuration (Length $L \neq L_w$).	66
Table 7-3: Potential Error for Different Values of Wire Radius R _{in} .	66
Table 7-4: Potential Error for Different Mesh Sizes.	66
Table 7-5: The Calculated Radial Electric Field Values for Different Configuration Length	68
Table 7-6: The Calculated Radial Electric Field Values for Different Wire Radius	68
Table 7-7: The Calculated Radial Electric Field Values for Different Mesh Size	69
Table 7-8: The corona on set voltage for different R _{in} in both configurations.	70
Table 7-9: The corona onset voltage for different values of wire radius $R_{\rm in}$ in solid cylinder configuration	71