

Detection and Genotyping of Methicillin Resistance *Staphylococcus aureus* Infection and Colonization of Surgery Patients

Thesis Submitted for the award of the degree of doctor philosophy in microbiology

Ву

Hisham Abd El-Aziz Ahmed Abd El-Ghafar

M.Sc. of Microbiology 2010 Faculty of Science Ain Shams University

Supervisors

Prof. Dr. Ahmed Osman Mostafa

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Mervat Ismail El Borhamy

Professor of Microbiology Microbiology Department Faculty of Pharmacy Misr International University

Prof. Dr. Adel Fahmy Hamed

Professor of Phycology Botany Department Faculty of Science Ain Shams University

Dr. Khaled Zakaria El-Boghdady

Associate Professor of Microbiology Microbiology Department Faculty of Science Ain Shams University

Microbiology Department Faculty of Science Ain Shams University 2017

ACKNOWLEDGMENT

I would like to express gratitude to his major advisor **Dr.Khaled Zakaria El-Boghdady**, Associate Professor of Microbiology,
Microbiology Department, Faculty of Science, Ain Shams
University, for his helpful guidance, close supervision in revising
the whole study, and instructive supervision in addition to his
valuable remarks, suggestions, encouragement and unlimited help.

Deep and Special thanks are due to **Professor Dr. Mervat Ismail El Borhamy**, Professor of microbiology, Head of Microbiology Department, Faculty of Pharmacy, Misr International University for her valuable help, close supervision in revising the whole study, precious advice and guidance throughout this study.

Sincere appreciations are due to **Prof. Dr.Ahmed Osman** for his valuable help, advice and supervision throughout this work.

My sincere thanks to prof. Dr.Adel FahmyHamed, for his kind supervision and support and guidance throughout this work.

Last but not least, I would like to pay thanks to all staff members of microbiology department, Ain Shams university for their sincere help and support.

Hisham Abdel Aziz

CONTENTS

Title	Page No.
Abbreviations	I
List of Tables	IV
List of Figures	VI
Abstract	IX
Introduction	
Aim of the work	
1. Literature Review	
1.1 Staphylococcus aureus	6
1.1.1 History of Staphylococcus aureus strains discovery	6
1.1.2 Taxonomy and classification of <i>Staphylococcus</i> species	10
1.1.3 Morphology of Staphylococcus aureus	11
1.1.4 Culture conditions and characteristics	11
1.1.5 Habitat	
1.1.6 Epidemiology of S. aureus	13
1.1.7 Genome of Staphylococcus aureus	14
1.1.8 Pathogenesis of <i>S. aureus</i>	16
1.1.9 Colonization of <i>S. aureus</i>	22
1.2 Methicillin Resistant Staphylococcus aureus (MRSA)	24
1.2.1 Evolution of MRSA	24
1.2.2 Epidemiology of MRSA	25
1.2.3 Differences between CA-MRSA and HA-MRSA	29

CONTENTS

Title	
1.2.4 Transmission of MRSA	31
1.2.5 Mechanism of resistance of MRSA	
1.2.6 Risk factors for colonization and infection by MRSA	43
1.2.7 Laboratory Diagnosis of Staphylococcal Infections	45
1.2.8 Resistance of MRSA to antimicrobial agents	54
1.2.9 MRSA Decolonization and Treatment	58
2. Materials and Methods	
2.1 Materials	65
2.1.1 Population study	
2.1.2 Patients information and data history	
2.1.3 Media	
2.1.4 Reagents, buffers and solutions	
2.2 Methods	
2.2.1 Samples collection	
2.2.2 Culturing method	75
2.2.3 Identification of <i>S. aureus</i> isolates	75
2.2.4 Maintenance of MRSA isolates	79
2.2.5 Identification and differentiation of MRSA from other <i>S. aureus</i> isolates	79
2.2.6 Standards and criteria used for classification of MRSA in to Community Acquired and Hospital Acquired	81
2.2.7 <i>In vitro</i> antibiotics sensitivity testing of all CA-MRSA and HA-MRSA isolates	82
2.2.8 Genotypic detection of <i>mec</i> A, <i>fem</i> A, <i>fem</i> B, PVL genes and Intgron class I and II genes in MRSA by PCR	84

CONTENTS

Title	Page No.
2.2.9 Patients Management for MRSA Decolonization	91
2.2.10 Statistical analyses	92
3. Results	
3.1 Study population	93
3.2 Detection of Methicillin Resistance <i>S. aureus</i> MRSA from patients samples by conventional methods	97
3.3 Distribution of MRSA isolates	104
3.4 Classification of MRSA isolates	108
3.5 Susceptibility of all MRSA isolates (CA –MRSA and HA MRSA) to different antibiotics/ Antimicrobial classes	
3.6 Genotyping of HA-MRSA and CA-MRSA isolates	
3.7 Patients Management for MRSA Decolonization	
4. Discussion	
5. Summary	
6. Conclusion and Recommendation	173
7. References	175
8. Index	
8. Arabic Summary	240

APPREVIATIONS

ACH Acute-Care Hospital/Healthcare
ACM Arginine Catabolic Mobile Element

AK Amikacin

AMS Ampicillin/sulbactam

AUG Amoxicillin/ Clavulanic Acid
BHI Brain heart infusion broth
BPEI Branched Poly Ethylenimine

BSI Blood Stream Infection

C ChloramphenicolCA Community Acquired

CDC Centers for Disease Control and Prevention

CIP Ciprofloxacin

CLSI Clinical and Laboratory Standards Institute

CNS Coagulase Negative Staphylococci crr Chromosome recombinase Ge

CV Core VariableCXM CefuroximeDA Clindamycin

D-Ala-D-Ala
 DNA
 Deoxyribonucleic acid
 DNase
 Deoxyribonuclease
 dsDNA
 Deoxyribonuclease
 double stranded DNA

E Erythromycin

EDTA Ethylene Di-amine Tetra Acetic acid **ELISA** Enzyme linked immunosorbent assay

EMRSA Epidemic MRSA ETT Endo-Tracheal Tube

F Nitrofurantoin

FDA Food and Drug Administration

FOX Cefoxitin

HA Hospital/Healthcare AcquiredHAIs Healthcare-Associated Infections

ICU Intensive Care Unit

IDSA Infectious Disease Society of America

IPM Imipenem

APPREVIATIONS

laMRSA livestock-associated MRSA LTCF long-term care facilities

LZD Linezolid

mecA Methicillin Resistance Gene

MEM Meropenem

MGE's Mobile Genetic Elements

MHC Major Histocompatibility ComplexMIC Minimum Inhibitory Concentration

MRSA Methicillin Resistant Staphylococcus aureus

MSA Mannitol salt agar

NAMRU 3 Naval Medical Research Unit No. 3

OD Optical Density

OFX Ofloxacin

ORSAB Oxacillin Resistance Screening Agar Base

PBP Penicillin-Binding Protein
PCR Polymerase Chain Reaction
PRSA Penicillin-resistant *S. aureus*PVL Panton Valentine leukocidin

Q-D Quinupristin-dalfop

RA Rifampin

rDNA ribosomal DNA **RNA** Ribonucleic Acid

SA Staphylococcus aureus
SAg Super-Antigen Genes

SaPIs Staphylococcus aureus Pathogenicity I

SCF Cefoperazone / Sulbactam SDW Sterile Distilled Water

SEM Scanning Electron Microscopy

SSI Surgical site infection
SXT Trimothoprim/ sulfameth

TAE Tris Acetate EDTA
TE Tri-HCl EDTA
TEC Teicoplanin

Transposons

TSB Tryptone soya broth

TSST-1 Toxic shock syndrome toxin

UTI Urinary tract infection

APPREVIATIONS

VA Vancomycin
 VISA Vancomycin Intermediate Staphylococcus aureus
 VRSA Vancomycin Resistant Staphylococcus aureus

LIST OF TABLES

No	Title	Page 1
1	Virulence factors of S. aureus.	17
2	Diameter of zone of inhibition (in mm) of different group of antibiotics according to CLSI (2012), with their mode of action.	83
3	Primers used to initiate PCR.	87
4	Amplification reaction components setup of reaction master mix for each 25-µl reaction.	88
5	Age ranges for all subjected Patients.	94
6	Distribution of collected samples per genders.	95
7	Results of cefoxitin 30µg disc diffusion susceptibility test and ORSAB sub-culturing.	100
8	Percentage of MRSA isolates infections among S. aureus isolates.	103
9	Percentage and distribution of MRSA positive isolates per Gender.	104
10	Distribution of MRSA as per age ranges.	105
11	Distribution of MRSA isolates relative to each clinical site.	107
12	Percentage and distribution of CA-MRSA and HA-MRSA in different clinical sites.	109
13	Distribution and classification of CA-MRSA and HA-MRSA per gender.	110
14	Distribution of CA-MRSA and HA-MRSA as per	112
15	Susceptibility pattern of MRSA isolates to different antibiotics (AB).	114
16	Percentages of susceptibility of CA-MRSA and HA-MRSA to different antibiotics.	116
17	Prevalence of different tested genes in all MRSA isolates.	134

LIST OF TABLES

No	Title	Page 1
18	Prevalence of different tested genes in HA-MRSA	135
	and CA-MRSA.	133
19	Correlation between clinical site of specimens and	
	existence of PVL, integron I and integron II	137
	genes in MRSA isolates.	
20	Percentage of successful MRSA decolonization	120
	from nasal, groin and axilla.	139

LIST OF FIGURES

No	Title	Page 1
1	Colonies of Staphylococcus aureus.	12
2	Distributions of Patients per Age.	94
3	Distribution of collected samples per genders.	95
4	Distribution of collected samples and specimens as per deferent sites.	96
5	Gram stained film prepared from the identified S. aureus colonies.	97
6	Growth of MRSA on mannitol salt agar (MSA), oxacillin resistance screening agar base (ORSAB) and disk diffusion susceptibility test.	99
7	Positive catalase test.	101
8	Growth of MRSA on deoxyribonuclease (DNase) agar.	102
9	Positive tube coagulase test	102
10	Percentage of MRSA isolates infections among S. aureus isolates.	103
11	Percentage of patients with individual MRSA-positive isolates.	104
12	Percentage and distribution of MRSA relative to gender.	105
13	Distribution of MRSA relative to age ranges.	106
14	Percentage and distribution of positive MRSA samples in each clinical site.	107
15	Distribution of CA-MRSA and HA-MRSA in different clinical sites.	109
16	Percentage, distribution and classification of positive MRSA per gender.	111
17	Distribution of CA.MRSA and HA-MRSA as per different age ranges	112

LIST OF FIGURES

No	Title	Page 1
18	Susceptibility pattern of MRSA isolates to different antibiotics.	115
19	Susceptibility pattern of CA-MRSA isolates to different antibiotics.	117
20	Susceptibility pattern of HA-MRSA isolates to different antibiotics.	118
21	Ethidium bromide-stained agarose gel of specific PCR products of mecA gene for some of HA-MRSA bacteria isolates.	120
22	Ethidium bromide-stained agarose gel of specific PCR products of mecA gene for some of CA-MRSA bacterial isolates.	121
23	Ethidium bromide-stained agarose gel of specific PCR products of femA gene for some of HA-MRSA bacteria isolates.	122
24	Ethidium bromide-stained agarose gel of specific PCR products of femA gene for some of CA-MRSA bacteria isolates.	123
25	Ethidium bromide-stained agarose gel of specific PCR products of femB gene for some of HA-MRSA bacteria isolates.	124
26	Ethidium bromide-stained agarose gel of specific PCR products of femB gene for some of CA-MRSA bacterial isolates.	125
27	Percentage of existence of femB gene in CA-MRSA.	125
28	Ethidium bromide-stained agarose gel of specific PCR products of lukS-PV and lukF-PV (PVL) gene of HA-MRSA isolates.	126
29	Percentage of existence of PVL gene in HA-MRSA.	127

LIST OF FIGURES

No	Title	Page 1
30	Ethidium bromide-stained agarose gel of specific PCR products of <i>luk</i> S-PV and <i>luk</i> F-PV (PVL) gene of CA-MRSA isolates.	128
31	Percentage of existence of PVL gene in CA-MRSA.	128
32	Ethidium bromide-stained agarose gel of specific PCR products of class 1 integron gene of HA-MRSA isolates.	129
	Ethidium bromide-stained agarose gel of specific PCR products of class II integron gene of HA-MRSA isolates.	130
34	Percentage of prevalence of integrons class I and class II genes in HA-MRSA.	131
35	Ethidium bromide-stained agarose gel of specific PCR products of class 1 Integron gene of CA-MRSA isolates.	132
36	Ethidium bromide-stained agarose gel of specific PCR products of class II integron gene of CA-MRSA isolates.	133
37	Percentage of prevalence of integrons class 1 and class II in CA-MRSA.	133
38	Prevalence of existence of different genes in MRSA isolates.	135
39	Prevalence of existence of different genes in HA-MRSA and CA-MRSA isolates.	136
40	Correlation between clinical site of specimens at existence of PVL, integron class I and integron II genes in MRSA isolates.	137
41	Percentage of colonized MRSA isolates relative total isolated MRSA.	138
42	Percentage of successful MRSA decolonization from each site (nasal, groin and axilla).	139
43	Percentage of total successful MRS decolonization.	140

Abstract

Methicillin-resistant *Staphylococcus aureus* (MRSA) is one of the major health hazards responsible for a large number of nosocomial (hospital acquired) infections worldwide and became of greater public health concern since the emergence of community acquired MRSA.

Out of 338 *Staphylococcus aureus* isolates collected from 374 patients, 108 (32.2 %) showed positive growth on Oxacillin Resistance Screening Agar Base (ORSAB) selective media for MRSA while only 105 (31.1%) isolates showed resistance to 30 µg cefoxitin susceptibility test and classified as MRSA. Among the MRSA isolates (105), 77 (73.3%) were identified as community acquired (CA) MRSA and 28 (26.7%) isolates were hospital acquired (HA) MRSA.

The frequency of resistant and susceptibility towards 19 antibiotics revealed that all MRSA (100%) isolates were sensitive to vancomycin (VA 30 µg) and linezolid (LZD 30 µg).

All of CA-MRSA and HA-MRSA isolates were screened for *mec*A, *fem*A, *fem*B, *luk*S-PV and *luk*F-PV (PVL) genes and intgrons class I and class II genes. Both *mec*A and *fem*A genes were present in all (100%) HA-MRSA and CA-MRSA isolates. *fem*B gene was recovered from all HA-MRSA isolates and 72 (93.5%) of CA-MRSA isolates.

PVL gene was detected in 8 (28.6 %) HA-MRSA isolates and seventy-one (92.2%) CA-MRSA.

Class I integron gene was recovered from 17 (60.7%) HA-MRSA isolates and 29 (37.7%) CA-MRSA isolates, while class II integron gene was recovered from only 3 (10.7%) HA-MRSA isolates and from five (6.5 %) CA-MRSA isolates.

Decolonization measures were applied on all colonized sites as per CDC, (2007) recommendation and the results of successful decolonization were 90.9% from nasal, 93.9% from groin and 80% from axilla and the total percentage of 91.8% successful decolonization was achieved.