

Ain Shams University
Faculty of Engineering
Department of Architecture Engineering

Energy Efficient Retrofitting of Hotel Buildings in Cairo

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

By

Shaimaa Tarek Salah Eldin Ahmed Hassan

BSc in Architecture 2012- Ain Shams University

Under Supervision

Professor Dr. Ahmed Atef Al Desouky

Professor of Architecture and Environmental Control Ain Shams University

Dr. Abeer Mohamed Mostafa

Assistant Professor of Architecture and Environmental Control Ain Shams University

Statement

This thesis is submitted to Ain Shams University for the M.Sc. Degree in Architecture.

The work included in this thesis was carried out by the researcher at the department of Architecture, Faculty of Engineering, Ain Shams University, and during the period from 2015 to 2017.

No part of this thesis has been submitted for a degree of a qualification at any other university or institute.

Name	Shaimaa Tarek Salah Eldin Ahmed Hassan
Signature	
Date	

Ain Shams University
Faculty of Engineering
Department of Architecture Engineering

Name: Shaimaa Tarek Salah Eldin Ahmed

Title: Energy Efficient Retrofitting of Hotel Buildings in Cairo Degree: Master of Science Degree in Architecture Engineering

Board of Examiners:

Board	Signature
Professor Dr. Mohamed Khairy Amin Hamed	
Professor of Architecture, Department of Architecture, faculty of Engineering, Banha University	
Professor Dr. Akram Farouk Mohamed	
Professor of Architecture, Department of Architecture, faculty of Engineering, Ain Shams University	
Professor Dr. Ahmed Atef Al Desouky	
Professor of Architecture and Environmental Control ,Department of Architecture, faculty of Engineering, Ain Shams University	

Date of research:

•	Approval stamp:		
•	Date of Approval:	/	
•	Faculty board Approval:	/	/
•	University Board Approval:	/	/

Acknowledgement

First of all I thank God for enabling me to accomplish my goals.

Secondly, this work would not be possible without the support of my supervisors, Prof. Ahmed Atef and Dr. Abeer M. Mostafa who taught me and helped me with their advice and inspirational ideas.

I wish to thank all my family who always gave the hand of support and creating the peaceful environment around me to allow me reach my goal during my hard times of this research, also through all my study life to reach to this point.

Finally I would like to thank all my friends who supported me and motivating me to overcome the difficulties to complete my master's degree.

Abstract

Greenhouse gases (GHG) emissions of Egypt represent nearly 1 percent of the World's GHG emissions, and according to IPCCC, Egypt will be affected by the impact of climate change risks. It was also pointed out that the building sector consumes up to 40 percent of all energy and contributes up to 30 percent of global annual greenhouse gases emissions through the operational phase. That makes existing buildings sector is an opportunity to provide the potential of energy savings techniques and programs and reducing CO2 emissions. It can be achieved through retrofitting existing promote environmental conservation and development during the operational periods of building use. Hotels sector in Egypt uses huge amounts of energy, therefore, investments in more efficient energy use can lead to significant reductions in energy consumption, and energy bills. Hoteliers are nowadays operating costs environmentally conscious than ever because it can cost far more to operate a lodging facility if it is not sustainable. Some innovative energy management systems could cut energy costs for hotels by up to 65%.

The thesis consists of two parts and ends with conclusion and recommendations. The first part introduces the current situation of energy crisis, global warming and the effect of built environment (in chapter 1). It also discusses the international efforts can be taken towards sustainability through the built environment and the retrofit process as a solution. The hotel buildings situation is introduced (in chapter 2), the energy consumption activities and the energy efficiency measures can be implemented. In the second part of this thesis 6 hotels in Cairo were selected as case studies (in chapter 3). It analyzed the different implemented measures and the effect on saving energy. Conclusion of the thesis is presented in chapter 4 to be considered in other searches.

Key words: Climate change, Retrofitting, Energy Efficiency, Hotels.

Contents

Acknowledgments	.i
Abstract	ii
Contents	11
List of Figures	/i
List of Tablesvi	111
Introduction	1
Overview	3
Problem Statement	.4
Research Objectives.	4
Research Methodology	4
Research Scope	.5
Research Structure	5
Chapter One: Climate change and the Built Environment	
1.1 Introduction	1
1.2 Climate change and Carbon problem	2
1.3 Energy consumption and crisis	6
1.3.1. World's energy consumption1	6
1.3.2. Egypt's energy consumption	0
1.4 Climate Change and the Built Environment2	23
1.4.1. The Contribution of Buildings to Climate Change	24
1.4.2. Greenhouse Gas (GHG) emissions reduction in buildings2	:5
1.5 Retrofitting Existing building	0
1.5.1. Sustainable retrofit definition	0

1	1.5.2. Retrofit Methodologies	32
1	1.5.3. The Phases of Implementing energy efficiency re	etrofit34
1	1.5.4. Key elements affecting building retrofit	44
1	1.5.5. Building Retrofit Technologies	46
1	1.5.6. Rating systems for Existing buildings	47
1.6 I	Postlude	50
2.1. I	r Two: Hotel buildings performance & Energy saving	_ _
55 2.2. H	Energy consumption	in
hotel	ls56	
2.2.1.	Energy Use Intensity.	56
2.2.2.	Factors affecting energy use in hotels	57
2.2.3.	Energy consuming sources in hotels	59
2.2.4.	. Energy consuming activities in hotels	60
2.3. H	Energy	Saving
Potei	ntials62	
2.3.1.	Energy Retrofit Methods of Building Enclosure	63
2.3.2.	Energy retrofit methods of lighting	66
2.3.3.	Energy retrofit methods of HVAC	66
2.3.4.	. Solar Water Heaters for hot water production (SWH)	67
2.3.5.	Building energy management systems (BEMS)	67
2.4. I	Programs for Energy Efficiency and Renewable	Energy in
Hote	els73	
2.4.1.	. EGYSOL	73
2.4.2.	Green Star Hotel Initiative	73
2.4.3.	. Egyptian German Joint Committee on RE, EE and	Environmental
	Protection (JCEE)	74

2.4	4.4. Solar Ene	rgy Developn	nent Association	n (SEDA)	74
2.5.	Barriers	affe	cting	energy	efficiency
ir	mprovement		75		
2.6.	Examples	of	Energy	Efficient	retrofitted
Н	Iotels		78		
2.0	6.1. Existing	Hotel in Gree	ce		78
2.0	6.2. Existing	Hotel in Braz	il		82
2.0	6.3. Crowne P	laza Hotel in	USA		86
2.7.	Postlude				•••••
	90				
Char	ntor Throp: A	nalysis of R	etrofitted Hot	tel Buildings in C	aira
		-			
3	.3. Methodology	of case studi	es analysis		93
3	.4. Analyzing th	e selected cas	e studies		93
	3.4.1.	Case study	y (1): Safir Hote	el	94
	3.4.2.	Case study	y (2): Fairmont	Heliopolis_Hotel	99
	3.4.3.	Case study	y (3): JW Marie	ott Hotel	102
	3.4.4.	Case study	y (4): Conrad H	otel	105
	3.4.5.	Case study	y (5): Ramses H	Iilton Hotel	108
	3.4.6.	Case study	y (6): Sofitel Ho	otel	112
P	ostlude				116
Chap	pter Four: Co	nclusion and	d Recommend	dations	
4	.1 Conclusion				121
Refe	rences				125
				· · · · · · · · · · · · · · · ·	

List of Figures:

Chapter 1

Figure (1-1: Potential climate change impact according to IPCC 92 scenarios	13
Figure (1-2): Way-marks for the global energy emissions road map to 2050	15
Figure (1-3): Egypt Carbon dioxide (CO2) emissions per capita	15
Figure (1-4): World Energy Consumption, 1990-2040.	17
Figure (1-5): World Energy Consumption by source	8
Figure (1-6): Global Energy-related co2 Emissions.	19
Figure (1-7): Energy consumption by source and sector 2015	20
Figure (1-8): Energy Consumption in Egypt by sector 2012/2013	and
2013/2014	21
Figure (1-9): Primary Energy Consumption in Egypt by fuel 2013	22
Figure (1-10): Schematic overview of the main mechanisms in which clim	nate
change impacts on buildings, building occupants, and the key processes taking p	lace
in buildings	23
Figure (1-11): Life Cycle Phases of Buildings	25
Figure (1-12): Estimated economic mitigation potential by sector and region us	sing
technologies and practices expected to be available in 2030	26
Figure (1-13): Small savings from large numbers of end-use units constitute	the
long-tail distribution of building sector projects	27
Figure (1-14): the 2030 challenge	29
Figure (1-15): Energy Use and Management	34
Figure (1-16): A systematic approach for sustainable building retrofits	35
Figure (1-17): A series of Energy-Efficient Strategies and their Payb	oack
Periods	42
Figure (1-18): Measurement and Verification.	.44
Figure (1-19): Key elements affecting building retrofits	45
Figure (1-20): Main categories of building retrofit technologies	47

Chapter 2

Figure (2-1): Energy intensity versus hotel star rating
Figure (2-2): Profile of energy resources and their usage in 3 and 4 star hotels
Figure (2-3): Solutions for low energy building63Figure (2-4): Glazing types and low-E glass65Figure (2-5): Areas of Energy Efficiency66Figure (2-6): The effect of solar screen shade68
Figure (2-7): The hotel building model showing double loaded corridor70
Figure (2-8): Energy efficiency measures for large hotel with 200 rooms
Figure (2-9): Energy savings of different measures
Figure (2-10): Total final energy consumptions per use in kWh
Figure (2-11): Primary energy consumptions per final use for the four variants
Figure (2-12): The transformation of the façade and the sun protection elements
Figure (2-13): 3D realistic representation of the hotel
Figure (2-14): 3D scheme of the thermal zones in model's simulation
Figure (2-15): Building overall energy consumption in the current state and the final scenario
Figure (2-16): Crowne Plaza Hotel
Figure (2-17): Comparison between pre-retrofit building, code baseline and the proposed design
Figure (2-18): Estimated Annual Energy Use and Percentage Savings by End Use

Chapter 3

Figure ((3-1): Safir l	notel pers	pective				94
Figure ((3-2): The se	elected ro	of for PV c	ells for outdo	or lighti	ng supply	97
Figure sources						daylighting	
Figure ((3-4): Fairm	ont Helio	polis hotel	perspective			99
Figure (3-7): Ramse	es Hilton	hotel persp	ective			108
Figure ((3-8): Sofite	l Hotel pe	erspective				112
Figure ((3-9): The ex	kposed gl	ass in the e	levation of th	e gym	·····	115
Figure ((3-10): The	double gl	aze and the	internal sun	shades	·····	115
List of	Tables:						
Table (1	l-1): A discı	riminatio	n between t	erms of retroi	fit		31
Table (1	1-2): key ph	ases to er	nergy retrof	itting			33
Table (1	-3): Phases	of Imple	mentation s	sustainable re	trofit		37
Table (1	-4): Rating	systems	for Existing	g Buildings			49
			-			for hotel build	
Table (2	2-2): Factors	affecting	g energy co	nsumption in	hotels.	· · · · · · · · · · · · · · · · · · ·	58
	*	•			•	erations in 3 and	
Table (2	2-4): List of	the energ	gy conserva	tion measures	s and sir	nple paybacks	68
Table (2	2-5): Energy	efficienc	ey barriers a	and way to ov	ercome	in Egypt	75
	-		-			t variants per b	_

Table (2-7): Energy	consumption of	of the hotel	 83
1 doic (2 /). Dilei 5)	consumption o	1110 110101	 55

Introduction

- Overview
- Problem statement
- Research objectives
- Research methodology
- Research scope and limitations
- Research structure