

Production and characterization of polyhydroxyalkanoates biopolymer(s) produced by Acinetobacter baumannii isolate P39; Bacillus cereus isolate P83 and Azomonas macrocytogenes isolate P173

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

PhD degree

In

Pharmaceutical Sciences

(Microbiology and Immunology)

By

Noha Salah Elsayed Yousef

Master (MSC) degree of Pharmaceutical Sciences,

2014

Production and characterization of polyhydroxyalkanoates biopolymer(s) produced by *Acinetobacter baumannii* isolate P39; *Bacillus cereus* isolate P83

and Azomonas macrocytogenes isolate P173

A Thesis

Submitted in Partial Fulfillment of the Requirements for the **PhD degree** In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Noha Salah Elsayed Yousef

Master of Pharmaceutical Sciences, Microbiology and Immunology,
Faculty of Pharmacy, Ain Shams University, 2014
Under Supervision of

Prof. Dr. Nadia A. El-Haleem Hassouna

Professor of Microbiology and Immunology, Faculty of Pharmacy,
Ain Shams University

Prof. Dr. Mahmoud Abdul-Megead Yassien

Vice Dean for Community service and Environmental development,
Professor of Microbiology and Immunology, Faculty of Pharmacy,
Ain Shams University

Prof. Dr. Khaled Mohamed Anwar Aboshanab

Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Acknowledgements

اللهم لك الحمد كما ينبغي لجلال وجهك ولعظيم سلطانك

I would like to thank **Prof. Dr. Nadia Hassouna**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for her support, encouragement and continuous guidance throughout the work.

I would like to express my gratitude to **Prof. Dr.**Mahmoud Abdul-Megead Yassien, Vice Dean for Community service and Environmental development and Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for scientific supervision, constructive criticism, and follow up throughout this work. His time and effort in revising the thesis is highly appreciated.

My deepest gratitude and appreciation goes to **Prof. Dr. Khaled Anwar Aboshanab**, Professor of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University for suggesting the research point, planning the work, his real support, continuous motivation, follow up throughout this work, and revising the thesis.

I would like to thank **Prof. Dr.Mohammed Mabrouk Aboulwafa,** Head of Microbiology & Immunology department, Faculty of Pharmacy, Ain Shams University for suggesting the idea of bacterial production of biopolymer in the master thesis which was further continued in this thesis.

I would like to thank **Dr. Ghadir EL-Housseiny**, lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for her valuable assistance in the kinetic modelling part, providing Graph pad prism software and for her friendly cooperation.

Special thanks goes to **Dr. Ahmed Essam**, lecturer of phytochemistry, Faculty of pharmacy, Ain shams University for his help and valuable guidance in the ¹H-NMR spectroscopy part in this thesis.

I am greatly indepted to all of my friends especially Eman Mantawy, PhD, Doaa Osama, Msc and Abeer hussien, Msc for their help, friendly co-operation whenever possible.

I would also like to thank all my colleagues and all workers in the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for their help and support.

Last but not least, my deepest gratitude for my father, brother and fiancée for their encouragement, patience, and everlasting support. Finally, this thesis is dedicated for the memory of my beloved mother.

والحمد لله رب العالمين.....

Naha Salah Elsayed

Acknowledgements	I
Abbreviation	1
Abstract	3
Introduction	8
Literature review	11
1. Biopolymers	11
2. Microbial biopolymers	12
2.1 Polysaccharides	12
2.2 Protein	12
2.3 Polyhydroxyalkanoates	12
3. Discovery and historical development of PHA	13
4. Physical properties of PHA	14
5. Physiological role of PHA in nature	15
5.1 PHA as a Carbon and Energy Reserve Material.	
5.2 Voltage dependent calcium channels	16
5.3 PHAs as Environmental Markers	16
5.4 Energy generation	16
6. POLYHYDROXYALKANOATES (PHA)	PRODUCING
MICROORGANISMS	17
6.1 Hydrocarbon degraders as PHA producers	17
6.2 Halophiles as PHA Producers	18
6.3 Photosynthetic Bacteria as PHA Producers	19
6.4 Antibiotic producers as PHA producers	19
6.5 Activated sludge as PHA producers	20
7. PHA BIOSYNTHETIC PATHWAYS AND ITS REGULATION	

7.1 Chemical structure of PHA	20
7.2 Classification of PHA	21
7.3 Biosynthesis	22
7.4 PHB granule formation	24
7.5 Regulation of PHA synthesis	25
7.5.1. At enzymatic level	25
7.5.2. At transcription level	26
8. PHA detection techniques	28
9. Quantification of PHA	29
10. Characterization of PHA	30
11. PHA production	34
11.1 Selection of microorganisms	34
11.2 Factors affecting production	35
11.2.1Carbon sources	35
11.2.2 Oxygen	35
11.2.3 Nitrogen sources	36
12. Recovery and purification of PHA: polymer ex	xtraction
methods	36
12.1 Solvent extraction	37
12.2 Digestion methods	38
12.3 Mechanical disruption	39
13. Potential applications of polyhydroxyalkanoates	(PHA)
	39
14. Current PHA markets	41
MATERIALS AND METHODS	43
1. Bacterial isolates	43

2. Chemicals	44
3. Media	46
4. Reagents and buffers	48
5. Instruments	51
6. Computer programs	52
7. Measurement of bacterial growth	53
8. Production of poly-β-hydroxybutyrate (PHB) by the tested
isolates	57
8.1 PHB concentration measurement	59
8.2 Biomass calculation	61
8.3 PHB percentage per dry weight	61
9. Large scale production of poly-β-hy	droxybutyrate in a
laboratory fermentor	61
9.1 Poly- β -hydroxybutyrate production by A	. <i>baumannii</i> isolate
P39	62
9.1.1 Inoculum preparation	62
9.1.2 Fermentation process	62
9.1.2.1 Corn oil utilization	63
9.2 Poly- β -hydroxybutyrate production by B .	cereus isolate P83
9.2.1 Inoculum preparation	64
9.2.2 Fermentation process	64
9.3 Poly-β-hydroxybutyrate production using	g A. macrocytogenes
isolate P173	65
9.3.1 Inoculum preparation	65
9.3.2 Fermentation process	65
9.3.3 Glucose consumption using DNS assa	y65
9.3.4 Effect of inoculum size	66

9.3.5 Effect of pH	66
9.3.6 Effect of aeration rate	67
9.4 Fermentation kinetics models	67
9.4.1 Cell growth kinetic model	67
9.4.2 Product formation kinetic model	68
9.4.3 Effect of addition of potassium acetate on PHB produ	ction
and biomass	69
10. Recovery of the biopolymer produced by the tested iso	olates
	69
10.1 Molecular weight measurement	69
10.2 Recovery methods of PHB biopolymer	71
11. Characterization of the recovered biopolymer	73
11.1 Transmission electron microscope	73
11.2 Fourier transform infrared spectroscopy (FT-IR):	75
11.3 Nuclear magnetic resonance (NMR analysis):	75
11.4 Gel permeation chromatography (GPC):	75
11.5 Viscosity	75
12. Determination the activity of PHA synthase involved i	n the
biosynthesis of PHB biopolymer(s).	76
12.1 Evaluation of the effect of acrylic acid on PHB produc	ction
	76
12.2 PHA synthase enzyme assay	76
13.Detection and amplification of PHA synthase	gene
	78
13.1 Chromosomal DNA extraction	78
13.2 Primer design	78
13.3 Polymerase chain reaction (PCR):	81

13.4 Agarose gel electrophoresis
13.5 Sequencing of the amplified PHA synthase genes of the
test isolates82
13.6 Prediction of the tertiary structure of the PHA synthase
enzyme
13.7 Prediction of the presence of transmembrane helix in the
protein sequences of PHA synthase enzyme83
14. Statistical Analysis:
RESULTS85
1. PHB production by A. baumannii isolate P39, B. cereus
isolate P83 and <i>A. macrocytogenes</i> isolate P173 using shake flask.
85
2. Large scale production of PHB in a laboratory fermentor 87
2.1. A. baumannii isolate P3987
2.1.1. Time course of PHB production
2.1.2. The fermentor versus shake flask for PHB production 89
2.1.3. Effect of aeration
2.2. <i>B. cereus</i> isolate P83
2.2.1. Time course of PHB production
2.2.2 The fermentor versus shake flask for PHB production 94
2.2.3 Effect of different aeration rates
2.3 A. macrocytogenes isolate P173101
2.3.1 Time course of PHB production
2.3.2 The fermentor versus shake flask for PHB production . 103
2.3.3 PHB production using 10% v/v inoculum size 105
2.3.4 PHB production under controlled pH 108

2.3.5 PHB production using different aeration levels
2.4 Fermentation kinetics models
2.5 Effect of addition of potassium acetate on PHB production. 119
2.5.1 A. baumannii isolate P39
2.5.2 <i>B. cereus</i> isolate P83
2.5.3 A. macrocytogenes isolate P173121
3. RECOVERY OF PHB PRODUCED BY THE TESTED ISOLATES 122
3.1 <i>A. baumannii</i> isolate P39
3.2 <i>B. cereus</i> isolate P83
3.3 A. macrocytogenes isolate P173126
4. Characterization of the recovered biopolymer129
4.1 Transmission electron microscope
4.2 Fourier transform infrared spectroscopy (FT-IR) 131
4.3 ¹ H-NMR spectroscopy
_4.4 Gel permeation chromatography138
5. Assay of the crude extract(s) of the respective isolates for
determining the activity of PHA synthase enzyme140
5.1 PHB production in presence of acrylic acid140
5.2 PHA synthase enzyme assay
6. Detection of PHA synthase gene in the tested isolates by PCR
144
6.1 Sequencing of the amplified PHA synthase genes of the
tested isolates
6.2 Conserved domain analysis
6.3 Prediction of the tertiary structure of PHA synthase of the
three tested isolates

6.3.1 Modular Approach to Structural class	prediction
(MODAS)	150
6.3.2 Swiss model software	150
6.3.3 TMHMM server	150
DISCUSSION	156
PHB production on laboratory fermentor	158
PHB recovery by the tested isolates	168
Characterization of the produced polymer	171
Biosynthesis of PHB polymer	177
Conclusions	187
SUMMARY	188
REFERENCES	194
الملخص العربي	234

Table of figures

List of Figures

Figure 1: chemical structure of Polyhydroxyalkanoates. The
pendant group (R) varies from methyl (C1) to tridecyl
(C13)21
Figure 2: Different metabolic routes that can generate precursors to
PHA biosynthesis24
Figure 3: Standard curves showing the relationship between dry cell
weight and optical density of the test isolates
55
Figure 4: Standard curves showing the relationship between
bacterial viable count and optical density of the test isolates
56
Figure 5: Standard curve of different crotonic acid concentrations
and absorbance at 235 nm60
Figure 6: A standard curve between different concentrations of
glucose monohydrate assayed by DNS reagent versus absorbance at
540 nm
Figure 7: Time course of PHB production and biomass formation
86
Figure 8: Time course of biomass, PHB production, residual corn
oil percentage, pH and percentage of dissolved oxygen for PHB
production by A. baumannii isolate P39 in 14L laboratory
fermentor
Figure 9: PHB production and biomass formation profiles of
A. baumannii isolate P39 in the shake flask and in the fermentor
using the same production medium and culture
conditions

Table of figures

Figure 10: Time course of biomass formation, PHB production,
residual corn oil percentage, pH and percentage of dissolved oxygen
for PHB production by A. baumannii isolate P39 in a laboratory
fermentor. The applied conditions are similar to that described
before with only change in aeration rate to 0.5 vvm92
Figure 11: Time course of biomass, PHB production, residual corn
oil concentration, pH and dissolved oxygen percentage by B. cereus
isolate P83 in a laboratory fermentor94
Figure 12: PHB production and biomass formation profiles of B.
cereus isolate P83 in the shake flask and in the fermentor using the
same production media and culture conditions
121
Figure 13: Time course of biomass, PHB production, residual corn
oil percentage, pH and percentage of dissolved oxygen for PHB
production by $B.$ cereus isolate P83 in a laboratory fermentor. The
applied conditions are similar to that described before with only
change in aeration rate to 0.5 vvm
Figure 14: Time course of Biomass, PHB production, residual corn
oil percentage, pH and Dissolved oxygen % for PHB production by
B. cereus isolate P83 in a laboratory fermentor. The applied
conditions are similar to that described before with only change in
aeration rate to 2 vvm
Figure 15: Time course of biomass, PHB production, residual corn
oil percentage, pH and percentage of dissolved oxygen for PHB
production by B. cereus isolate P83 in the laboratory fermentor. The
applied conditions are similar to that described before with only
change in aeration rate to 4 yym

Table of figures

Figure 16: Maximum biomass, PHB production and PHB
percentage per dry weight by B. cereus isolate P83 in the laboratory
fermentor at different aeration rates after 24 hours of fermentation.
Conditions applied: uncontrolled initial pH of 7.2; temperature of
$28^{\circ}\text{C};$ agitation rate of 200 rpm and inoculum size 5%
v/v101
Figure 17: Time course of biomass, PHB production, pH and
dissolved oxygen % for PHB production by A. macrocytogenes
isolate P173 in a laboratory fermentor132
Figure 18: Comparison of biomass and PHB production profiles of
A. macrocytogenes isolate P173 in shake flask and in the fermentor
using the same production media and culture conditions104
Figure 19: Time course of biomass, PHB production and dissolved
Oxygen % for PHB production by A. macrocytogenes isolate P173
in a laboratory fermentor. The applied conditions are similar to that
described before with only change in inoculum size to 10%
v/v106
Figure 20: Profiles of PHB production, residual glucose percentage
and pH of fermentation medium by A. macrocytogenes isolate P173
in a laboratory fermentor. The applied conditions are similar to that
described before with only change in inoculum size to 10%
v/v137
Figure 21: Time course of biomass, PHB production, residual
glucose percentage and dissolved oxygen % for PHB production by
A. macrocytogenes isolate P173 in a laboratory fermentor. The
applied conditions are similar to that described before except that
pH was controlled at 7.2108