

Ain Shams University University College for Women for Arts, Science, and Education

STUDIES ON

SPECTROSCOPIC STUDIES ON SOME NOBLE METALS NANOCOMPOSITES MATERIALS FOR DIFFERENT APPLICATIONS

THESIS

Submitted for Ph.D. Degree of Science in Physics

By:

Eman Abd El Aziz Abd El badiaa Mohamed

(M.Sc. Physics 2011) **Supervisors:**

Prof. Dr. A.B. El - Bialy

Professor of Spectroscopy University College for women for Arts, Science, and Education Physics Department, Ain Shams University.

Prof.Dr.M.D.Badry

Profssor of Applied Physical Chemistry National Research Center

Dr. W.H. Eisa

Assistant professor of physics Spectroscopic Department Physics Division National Research Center

Dr .S.Abd El-Mongy.Ahmed

Assistant professor of physics, University College for women for Arts, Science, and Education Physics department, Ain Shams University

Dr .N.A. Shahin

Teacher of physics,
University College for women
for Arts, Science, and Education
Physics department,
Ain Shams University

Ain Shams University University College for Women for Arts, Science, and Education

Approval sheet phd Thesis

Student Name: Eman Abd El Aziz Abd El badiaa Mohammed

Thesis title: Spectroscopic studies on Some Noble Metals Nanocomposites Materials for Different Applications

Supervisors Committee:	Signature	
Prof. Dr. A.B. El – Bialy Professor of Spectroscopy University College for women For Arts, Science, and Education Physics department Ain Shams University	()
Prof. Dr. M.D.Badry Professor of Applied Physical Chemistry National Research Center	()
Dr .S.Abd El-Mongy.Ahmed Assistant professor of physics University College for women For Arts, Science, and Education Physics department Ain Shams University	()
Dr. W. H. Eisa Assistant professor of Physics Spectroscopy Department Physics Division National Research Center	()
Dr. N.A.M. Shahin Teacher of physics University College for women For Arts, Science, and Education Physics department Ain Shams University	()
Date of research: / / Post Graduate Studies Department Approval Stamp Faculty Council Approval Date: / /	Approval Date: / / University Council Approval Date: / /	

Ain Shams University University College for Women for Arts, Science, and Education

Approval sheet

Student Name: Eman Abd El Aziz Abd El Badiaa Mohamed

Thesis title: Spectroscopic studies on Some Noble Metals

Nanocomposites Materials for Different Applications

Scientific degree: M.sc

Department: Physics and computer science

Name of Faculty: Faculty of women

University: Ain Shams

B.Sc. Graduation Date: 2004

M. Sc. Graduation Date: 2011

List of contents

Number	Subject	page
	Abstract	
	Summary	
	List of Tables	
	List of Figures	
	Chapter One :General Review	1
	Chapter two: Theoretical Concept	31
2.1	Nanotechnology and Nanomaterials	31
2.1.1	Classification of Nanomaterials	32
2.1.2	Properties of Nanomaterials	32
2.2	Energy Band Theory	35
2.3	Production Approaches of Nanoparticles	36
2.4	Nanoparticales	38
2.4.1	Silver Nanoparticles	38
2.5	Radiation	39
2.6	Radiation and metal nanoparticles	41
2.7	Radiation Approaches for Nanoparticles	41
	Synthesis	
2.8	Polymer	42
2.8.1	Origin	43
2.8.2	Poly vinyl alcohol	44
2.8.3	Polyvinyl pyrrolidone	45
2.9	Polymer Nanocomposite	46
2.10	Theoretical Aspects	48
2.10.1	Transmission Electron Microscopy (TEM)	48
2.10.2	Structural Analysis (X-ray Diffraction (XRD))	50
2.10.3	UV- Visible Spectroscopy	51
2.10.4	Structural Analysis FTIR Spectroscopy	53
	Chapter Three: Instrumentation and	59
	Experimental Techniques	
3.1	Materials	59
3.2	Sample Preparation	59
3.2.1	Preparation of the Gamma Irradiated PVA/Ag	59
	Nanocomposites	
3.2.2	Preparation of the PVA/PVP/Ag	60

	Nanogomnositos	
2 2 2	Nanocomposites Propagation of the DVA/Ca/A a	60
3.2.3	Preparation of the PVA/Cs/Ag	60
2.2	Nanocomposites Function and I American and Taskerianas	<i>C</i> 1
3.3	Experimental Apparatus and Techniques	61
3.3.1	Irradiation Process	61
3.3.2	Spectroscopic Characterization	61
3.3.2.1	Transmission Electron Microscopy (TEM)	61
3.3.2.2	X- ray Diffractometry	67
3.3.2.3	Ultraviolet-visible Spectroscopy (UV-visible)	67
3.3.2.4	Fourier Transforms Infrared Spectrometry, (FTIR)	75
3.3.2.5	Swelling and Gel Fraction Determination	76
	Chapter Four: Results and Discussions	77
4.1	Characterization of UV-Irradiated PVA/Ag Nanocomposite Film	77
4.1.1	UV-visible Absorption Spectrum of PVA	77
4.1.2	Effect of HNO3 Addition to PVA/AgNO3 Composites	79
4.1.3	UV-visible Absorption Spectra of UV- Irradiated PVA/Ag Nanocomposite Films	83
4.1.4	Optical Bandgap of UV-Irradiated PVA/Ag Nanocomposites	87
4.1.5	X-ray Diffraction Pattern of UV-Irradiated PVA/Ag Nanocomposite Films	90
4.1.6	Determination of Particle Size Using Scherrer Formula	93
4.1.7	TEM Analysis of UV-Irradiated PVA/Ag Nanocomposites	95
4.1.8	FTIR Spectroscopic Analysis of UV- Irradiated PVA/Ag Nanocomposite Films	99
4.1.9	Swelling Behavior and Gel Content of UV- Irradiated PVA/Ag Nanocomposite	102
4.2	Characterization of UV-Irradiated PVA/Chitosan/Ag Nanocomposite Film	105
4.2.1	UV-visible Absorption Spectrum of Chitosan (Cs)	105
4.2.2	UV-visible Absorption Spectrum of PVA/Cs/Ag Nanocomposite Film	107

4.2.3	Ontical Randgan of IIV Imadiated	109
4.2.3	Optical Bandgap of UV-Irradiated PVA/Cs/Ag Nanocomposite Films	109
4.2.4		111
4.2.4	X-ray Diffraction Pattern of UV-Irradiated PVA/Cs/Ag Nanocomposite Films	111
105	1	112
4.2.5	TEM of UV-Irradiated PVA/Cs/Ag	113
106	Nanocomposite	117
4.2.6	FTIR of UV-Irradiated PVA/Cs/Ag	117
4.2.7	Nanocomposite Swalling Rehavior and Cal Content of LIV	119
4.2.7	Swelling Behavior and Gel Content of UV-	119
4.3	Irradiated PVA/Cs/Ag Nanocomposite Characterization of UV-Irradiated	121
4.3		121
4.3.1	PVA/PVP/Ag Nanocomposite Film	121
	UV-visible Absorption Spectrum of PVP	_
4.3.2	Effect of PVP blending on the UV-visible	124
4.2.2	Spectrum of PVA/AgNO3	126
4.3.3	Effect of UV-Irradiation on the UV-visible	126
4.2.4	Spectrum of PVA/PVP/AgNO3	100
4.3.4	Optical bandgap of UV-Irradiated	128
425	PVA/PVP/Ag Nanocomposites	121
4.3.5	X-ray Diffraction Pattern of UV-Irradiated	131
126	PVA/PVP/Ag Nanocomposite Films	122
4.3.6	TEM of UV-Irradiated PVA/PVP/Ag	133
4 2 7	Nanocomposites	126
4.3.7	FTIR of UV-Irradiated PVA/PVP/Ag	136
4.2.7.1	Nanocomposite	126
4.3.7.1	FTIR analysis of pure PVP	136
4.3.7.2	FTIR Spectroscopic Analysis of PVA/PVP	138
	and PVA/PVP/Ag Nanocomposite Films	
4.3.8	Swelling Behavior and Gel Content of UV-	142
	Irradiated PVA/PVP/Ag Nanocomposite	
4.4	Characterization of Gamma-Irradiated	144
	PVA/Ag Nanocomposite Film	
4.4.1	UV-visible Absorption Spectrum of PVA	144
4.4.2	Optical Bandgap of Gamma-Irradiated	146
	PVA/Ag Nanocomposites	
4.4.3	X-ray Diffraction Pattern of Gamma-	148
	Irradiated PVA/Ag Nanocomposite Films	
4.4.4	TEM of gamma-Irradiated PVA/Ag	150
	Nanocomposites	

4.4.5	FTIR of Gamma-Irradiated PVA/Ag	152
	Nanocomposites	
4.4.6	Swelling Behavior and Gel Content of	155
	Gamma-Irradiated PVA/Ag Nanocomposites	
4.5	Static catalytic performance of the polymeric	157
	Ag nanocomposite films	
	Conclusion	165
	Reference	171
	الملخص العربي	1

Acknowledgement

At first and for most thanks to (ALLAH) who gave me the power to finish this work.

I would like to offer special thanks to prof. Dr. Aida El Biale professor of physics, University College for women For Art, Science, and Education, Physics department, Ain Shams University. Although she is no longer with us, words cannot express how sorry I am about you. I miss you deeply already, and I can only imagine the heartbreak we feel.

No ward can ever express my deepest appreciation and endless gratitude to Prof. Dr. M.Dawy Professor of Applied ,Physical Chemistry, National Research Center.

I am especially thankful to Dr .S. Abd El-Mongy Assistant professor of physics, University College for women For Art, Science, and Education, Physics department, Ain Shams University for encouragement, help and support.

I would like to give a special thanks to Dr. Wael.H.Eisa Assistant professor of Physics -Spectroscopy department, physics division, National Research Center, as he has engaged me in many helpful discussions, provided me with important advices and nanotechnology application, information and measurements.

I am especially thankful to Dr .N .A.M.Shahin Assistant professor of physics, University College for women For Art, Science, and Education, Physics department, Ain Shams University for encouragement, help and support.

Finally, I am grateful to my family for patience and support especially my father.

Abstract

Well-dispersed silver nanoparticles (Ag NPs) were prepared via different pathways as PVA /Ag, PVA/Cs/Ag PVA/ PVP/Ag with UV-Irradiated and PVA/Ag with Gamma Irradiated induce the growth of the Ag NPs. TEM study shape and size, X-ray diffraction (XRD) confirm the crystallinity nature of the as-prepared Ag NPs. UV-visible spectra show a narrow and intense absorption surface Plasmon resonance (SPR) which implies a monodispersed Ag NPs were obtained via these methods. Mechanisms of gamma, PVA, CS and PVP in the preparation process were discussed through the FTIR of the reaction system

List of Tables

Table	Title	Page
Table(4-1)	The Optical Parameters of the UV-Irradiated	89
	PVA/Ag Nanocomposites	
Table(4-2)	The Particle Size Calculated from Scherrer	94
	Equation of the UV-Irradiated PVA/Ag	
	Nanocomposites	
Table(4-3)	The Optical Parameters of the UV-Irradiated	110
	PVA/Cs/Ag Nanocomposites	
Table(4-4)	The Particle Size Calculated from Scherrer	112
	Equation of the UV-Irradiated PVA/Cs/Ag	
	Nanocomposites	
Table(4-5)	The Optical Parameters of the UV-Irradiated	130
	PVA/PVP/Ag Nanocomposites	
Table(4-6)	The Particle Size Calculated from Scherrer	132
	Equation of the UV-Irradiated PVA/PVP/Ag	
	Nanocomposites	
Table(4-7)	The Obtained IR Absorption Bands and Their	137
	Assignment of the Pure PVP	
Table(4-8)	The Optical Parameters of the Gamma-	147
	Irradiated PVA/Ag Nanocomposites	
Table(4-9)	The Particle Size Calculated from Scherrer	149
	Equation of the Gamma-Irradiated PVA/Ag	
	Nanocomposites	

list of figures

Figure	Title	Page
Figure(2-1)	A Schematic Correlation of the Trademark Density of States for Bulk Metal with Quantum Confined Nanocrystals of the Similar Material	33
Figure(2-2)	Schematic Charts Indicating Band Gaps and Luminescence Properties Materials: (a) Band Diagram for Conductors, Semiconductors and Insulators, and (b) Semiconductor Photoluminescence: Excitation of Electron from VB to CB, Formation of Carrier Charges, Emission of Photon	37
Figure(2-3)	Chemical Structure of a- Polyvinyl pyrrolidone ,b- Poly vinyl alcohol	45
Figure(2-4)	Schematic Showing Bright Field Imaging and Dark Field Imaging Using TEM	49
Figure(2-5)	Show the Possible Electronic Transitions	54
Figure(3-1)	Schematic Diagram of Transmission Electron Microscope	62
Figure(3-2)	a Photo of the TEM JEOL 2010 Microscope	66
Figure(3-3)	X-ray Diffractometer (Shimadzu 7000)	68
Figure(3-4)	Block Diagram of UV- Visible Spectrophotometer	70
Figure(3-5)	UV-Vis JASCO 570	71
Figure(3-6)	JASCO - FTIR Spectrometer	73
Figure(3-7a)	Optical System of FTIR	75
Figure(3-7b)	FTIR Units	75
Figure(4-1)	UV-visible absorption spectrum of PVA film	78
Figure(4-2)	structural formula for PVA: (A) partially hydrolyzed; (B) fully hydrolyzed	78
Figure(4-3)	UV–Vis absorption spectra of unacidified and acidified PVA filled with AgNO ₃	80
Figure(4-4)	UV-visible absorption spectra of PVA/Ag nanocomposite film irradiated with UV- irradiation for different time intervals	84
Figure(4-5)	Typical plots of (αhv) ² vs hv for UV-irradiated PVA/Ag nanocomposites for different time intervals	89
Figure(4-6)	The X-ray diffraction pattern of UV-irradiated PVA/Ag nanocomposite films for different time intervals	91
Figure(4-7)	TEM image of Ag nanoparticles and (b) the histogram of the particle size distribution with Gaussian fitting for UV-irradiated PVA/Ag nanocomposite for 2 h	96
Figure(4-8)	(a) TEM Image of Ag Nanoparticles and (b) the Histogram of the Particle Size Distribution with Gaussian Fitting for UV-irradiated PVA/Ag Nanocomposite for 3 h	97
Figure(4-9)	(a) TEM Image of Ag Nanoparticles and (b) the Histogram of the Particle Size Distribution with	98

	Coussian Fitting for LIV irradiated DVA/Ag	
	Gaussian Fitting for UV-irradiated PVA/Ag Nanocomposite for 4 h	
Figure(4-10)	The FTIR Spectra of (a) Pure PVA film, and (b) UV-	101
11guic(+10)	Irradiated PVA/Ag nanocomposite film.	101
Figure(4-11)	(a) Swelling%, and (b) Gel% of UV-Irradiated PVA	104
8	/Ag Nanocomposites for Different Time Intervals.	
Figure(4-12)	Structural Formula for (Cs)	105
Figure(4-13)	UV-Visible Absorption Spectrum of Cs	106
Figure(4-14)	UV-Visible Absorption Spectra of PVA/Cs/Ag Films	108
	Irradiated with UV-Irradiation for Different Time	
	Intervals	
Figure(4-15)	Typical Plots of $(\alpha h v)^2 vs$ hv for UV-Irradiated	110
	PVA/Cs/Ag Nanocomposites for Different Time	
	Intervals	
Figure(4-16)	The X-ray Diffraction Pattern of UV-Irradiated	112
	PVA/Cs/Ag Nanocomposite Films for Different Time	
Fig. (4.17)	Intervals	114
Figure(4-17)	(a) TEM Image of Ag Nanoparticles and (b) the	114
	Histogram of the Particle Size Distribution with Gaussian Fitting for UV-Irradiated PVA/Cs/Ag	
	Nanocomposite for 1 h	
	Transcomposite for Th	
Figure(4-18)	(a) TEM Image of Ag Nanoparticles and (b) the	115
8(-)	Histogram of the Particle Size Distribution with	
	Gaussian Fitting for UV-Irradiated PVA/Cs/Ag	
	Nanocomposite for 3 h	
Figure(4-19)	(a) TEM Image of Ag Nanoparticles and (b) the	116
	Histogram of the Particle Size Distribution with	
	Gaussian Fitting for UV-Irradiated PVA/Cs/Ag	
	Nanocomposite for 4 h	
Figure(4-20)	The FTIR Spectra of (a) Pure Cs film, (b) PVA/Cs, and	118
1 iguic(4-20)	(c) PVA/Cs/Ag	110
Figure(4-21)	(a) Swelling%, and (b) Gel% of UV-Irradiated	120
118410(121)	PVA/Cs/Ag Nanocomposites for Different Time	120
	Intervals.	
Figure(4-22)	(a) The Repeating Unit of PVP and (b) Schematic	122
	Diagram of PVP Mesomeric Structure in Water	
Figure(4-23)	The UV-Visible Spectrum of the Aqueous Solution of	123
	PVP	
Figure(4-24)	the UV-Visible Spectrum of Unirradiated	125
	PVA/PVP/Ag Nanocomposite Film	
Figure(4-25)	UV-Visible Absorption spectra of UV-Irradiated	127
	PVA/PVP/Ag Nanocomposite for Different Time	
	Intervals	
Figure(4-26)	Typical Plots of $(\alpha h v)^2$ vs hv for UV-Irradiated	129
	PVA/PVP/Ag Nanocomposites for Different Time	

	Intervals	
Figure(4-27)	The X-ray Diffraction pattern of UV-Irradiated PVA/PVP/Ag Nanocomposite Films fro Different Time Intervals	132
Figure(4-28)	a TEM Image of Ag Nanoparticles and (b) the Histogram of the Particle Size Distribution with Gaussian Fitting for UV-Irradiated PVA/PVP/Ag Nanocomposite for 1 h	134
Figure(4-29)	(a) TEM Image of Ag Nanoparticles and (b) the Histogram of the Particle Size Distribution with Gaussian Fitting for UV-Irradiated PVA/PVP/Ag Nanocomposite for 4 h	135
Figure(4-30)	The FTIR Spectra of Pure PVP	137
Figure(4-31)	The FTIR sSpectra of (a) Pure PVP, (b) PVA/PVP, and (c) PVA/PVP/Ag Nanocomposite Films	141
Figure(4-32)	(a) Swelling%, and (b) Gel% of UV-Irradiated PVA/PVP/Ag Nanocomposites for Different Time Intervals	143
Figure(4-33)	The UV-Visible Spectrogram for PVA/Ag	145
	Nanocomposites Film after Different	
	_	
	Radiation Doses	
Figure(4-34)	Typical Plots of $(\alpha h v)^2$ vs hv for Gamma-Irradiated PVA/Ag Nnanocomposites	147
Figure(4-35)	The X-Ray Diffraction Pattern of Gamma-Irradiated PVA/Ag Nanocomposite films	149
Figure(4-36)	(a) TEM image of Ag Nanoparticles and (b) the Histogram of the Particle Size Distribution with Gaussian Fitting for 75 kGy γ-Irradiated PVA/Ag Nanocomposite	151
Figure(4-37)	FTIR Spectra of (a) PVA, and (b) Gamma Irradiated PVA/Ag Nanocomposites	154
Figure(4-38)	(a) Swelling%, and (b) Gel% of Gamma-Irradiated PVA/Ag Nanocomposites	156
Figure(4-39)	Structure of Reactive Blue 21 (RB-21).	159
Figure(4-40)	UV-Visible Absorption Spectrum of RB-21 Solution.	160
Figure(4-41)	The time-Dependent UV–Vis Absorption Spectra for a Typical Reduction Process Using UV-Irradiated PVA/Ag as Catalyst	162
Figure(4-42)	The time-Dependent UV–Vis Absorption Spectra for a Typical Reduction Process Using UV-Irradiated PVA/CS/Ag as Catalyst	163
Figure(4-43)	The time-Dependent UV–Vis Absorption Spectra for a Typical Reduction Process Using UV-Irradiated PVA/Ag/PVP as Catalyst	164

Summary

In this work, we prepared a series of Ag/PVA, PVA/CS/Ag, PVA/PVP/Ag with UV-Irradiated and Ag/PVA with Gamma-Irradiated nanocomposites was prepared successfully using a modern and new method. Our synthetic route did not need complicated apparatus or additional reducing agents.

The present work contains five chapters in addition to the list of figures, tables and references. The first two chapters are concerned with the introduction – reviews of previous studies and theoretical.

Chapter three describes the experimental setup and techniques used in the preparation of PVA, PVA/Ag, PVA/PVP, PVA/PVP/Ag and PVA/CS/Ag composites processing, irradiation and analysis. Several techniques were used to detect the structural changes due to irradiation and blending processing, these are: UV-Visible spectroscopy, X-ray diffraction, transmission electron microscopy (TEM) and Fourier transformer infrared spectroscopy (FTIR).

Chapter 4 includes the obtained results and their discussions:

Part I: Characterization of UV-Irradiated PVA/Ag Nanocomposite Film

Transmission electron microscope images illustrated that the average diameter of the Ag nanoparticles is indicated as the peak position of the Gaussian curves of the histogram to be from 10-23 nm with UV-irradiation time

was increased from 0.0 to 4 h. The particle shapes are mostly spherical, which is isotropic. Particles less than 10 nm are perfectly spherical, and the shapes of particles above 10 nm are distorted from spherical shape.

The XRD pattern of irradiated Ag/PVA nanocomposite samples show three new diffraction peaks which reveal that the Ag nanoparticles are formed in the PVA matrix and their crystal structure is face center cubic (fcc) structure. The irradiation time increases from 0.0 to 4 h, the intensity of the Ag lines increases and intensifies gradually in accordance with their growing grain sizes and no characteristic peaks were observed for the other impurities.

In this study the plasmon band of the Ag nanoparticles was noted at 448 nm. The spontaneous formation of silver nanoparticles can be attributed to the direct redox between PVA and Ag+ because there is no other reducing agent in the system. Moreover, the increased intensity as well as the red shift of the SPR band may be attributed to considerable increase in the amount of reduced silver and growth of silver nanoparticles.

FTIR spectrum of the obtained PVA/Ag nanocomposites The IR band at 1710 of PVA was intensified markedly and was shifted to 1725 cm⁻¹ as a result of Ag nanoparticles formation. In addition, it is also observed that intensity of the band at 1085 cm⁻¹ decayed after formation of the Ag nanoparticles, which is attributed to the stretch vibration of –C–O. Hence, it is suggested that the alcohol group (–C–OH) should be converted to the carbonyl group (–C=O) during the reduction with the silver